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Abstract 

 

As it is known, the Standard Model for particle physics (SM) has been successfully 

tested at all accelerator facilities and is currently the best tool available for 

understanding the phenomena on the subatomic scale. Conventional wisdom is that the 

SM represents only the low-energy limit of a more fundamental theory and that it can be 

consistently extrapolated to scales many orders of magnitude beyond the energy levels 

probed by the Large Hadron Collider (LHC). 

Despite its impressive performance, the SM leaves out a fairly large number of unsolved 

puzzles. In contrast with the majority of mainstream proposals on how to address these 

challenges, the approach developed here exploits the idea that space-time 

dimensionality becomes scale-dependent near or above the low TeV scale. This 

conjecture has recently received considerable attention in theoretical physics and goes 

under several designations, from “fractional field theory”, “continuous dimension” to 

“dimensional flow” and “dimensional reduction”. Drawing from the principles of the 

Renormalization Group program, our key finding is that the SM represents a self-

contained multifractal set. The set is defined on continuous space-time having 

arbitrarily small deviations from four-dimensions ( 4 D   << 1), referred to as a 

“minimal fractal manifold” (MFM). The book explores the full dynamical implications 

of the MFM and, staying consistent with experimental data, it offers novel explanations 

on some of the unsolved puzzles raised by the SM. 
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 “Rereading classic theoretical physics textbooks leaves a sense that there are holes 

large enough to steam a Eurostar train through them. Here we learn about harmonic 

oscillators and Keplerian ellipses - but where is the chapter on chaotic oscillators, the 

tumbling Hyperion? We have just quantized hydrogen, where is the chapter on the 

classical 3-body problem and its implications for quantization of helium? We have 

learned that an instanton is a solution of field-theoretic equations of motion, but 

shouldn’t a strongly nonlinear field theory have turbulent solutions? How are we to 

think about systems where things fall apart; the center cannot hold; every trajectory is 

unstable?”  

  “Chaos: Classical and Quantum I: Deterministic Chaos “ 

- P. Cvitanovic et al. 

( http://chaosbook.org/chapters/ChaosBook.pdf  )  
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INTRODUCTION 

This book develops a new perspective on the dynamical structure of the Standard Model 

for particle physics (SM), a framework that successfully explains the subatomic world 

and its fundamental interactions. The SM includes the (3) (2) (1)SU SU U   gauge 

model of strong and electroweak interactions along with the Higgs mechanism that 

spontaneously breaks the electroweak (2) (1)SU U  group down to the (1)U  group of 

electrodynamics. It has been confirmed countless times in all accelerator experiments, 

including the first round of runs at the LHC. The main motivation behind our work 

stems in the fact that, despite being overwhelmingly supported by experimental data, 

the SM has many puzzling aspects, such as the large number of physical parameters, a 

triplication of chiral families and the existence of three gauge interactions. Some of the 

unsettled issues revolve around the following questions: 

 Is the Higgs boson solely responsible for the electroweak symmetry breaking 

and the origin of mass? The current view supports this assertion, although 

understanding of the Higgs sector remains widely open at this time [  ]. There are 

two primary mass-generation mechanisms in the SM: the Higgs mechanism of 

electroweak symmetry breaking, accounting for the spectrum of massive gauge 

bosons and fermions, and dimensional transmutation, partially responsible for 

the mass of baryonic matter. While technical aspects of both mechanisms are well 

under control, neither one is able to uncover the origin of the electroweak scale or 

of the Higgs boson mass. 

 Are fundamental parameters of the SM finely tuned? The mass of the Higgs 

boson is sensitive to the physics at high energy scales. If there is no physics 
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beyond the SM, the elementary Higgs mass parameter must be adjusted to an 

accuracy order of 1 part in 1032 in order to explain the large gap between the TeV 

scale and the Planck scale [  ].  

 What is the origin of quark, lepton and neutrino mass hierarchies and mixing 

angles? These “flavor” parameters account for most of the basic parameters of 

the SM, and their pattern remains elusive. New particles at or above the TeV scale 

with flavor-dependent coupling charges are postulated in many scenarios, and 

observation of such particles would provide critical insights to these puzzles [  ].   

 What is the physical nature and composition of Dark Matter and how is the SM 

related to the gravitational interaction? 

 What is the underlying mechanism behind the matter-antimatter asymmetry in 

the Universe?  

It is generally believed that we are at a crossroads in the development of high-energy 

theory. Is there any compelling path to follow in our model-building efforts? We came a 

long way to recognize that, in general, Nature fails to fit the streamlined framework of 

conventional quantum field theories (QFT). Systems of quantum fields that are 

 weakly interacting,  

 nearly linear and stable against disturbances, 

 perturbatively renormalizable,  

form the backbone of “effective” QFT and are likely to represent exceptions rather than 

the rule. And yet we also know that both QFT and SM work exceptionally well up to the 

low TeV range probed by the LHC. A dilemma has undoubtedly surfaced on how to best 
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proceed.  For example, over the years, the many unsolved challenges of the SM led to an 

overflow of extensions targeting the physics beyond the SM scale. The majority of these 

proposals focus on solving some unsatisfactory aspects of the theory while introducing 

new unknowns. Experiments are expected to provide guidance in pointing to the correct 

theory yet, so far, LHC searches show no credible hint for physics beyond the SM up to a 

center-of-mass energy of s  =  8 TeV [ ]. These results, albeit entirely preliminary, 

suggest two possible scenarios, namely: 

 SM fields are either decoupled or ultra-weakly coupled to new dynamic structures 

emerging in the low or intermediate TeV scale, 

 There is an undiscovered and possibly non-trivial connection between the SM 

and TeV phenomena.  

It is often said that progress on the theoretical front requires understanding the first 

principles that drive Nature. The guiding principle we follow throughout this book is the 

universal behavior of nonlinear dynamical systems. We believe that there are reasons 

to conclude that this principle underlies a broad range of phenomena on the subatomic 

scale. In particular,  

 The universality principle is a natural tool for decoding the dynamics of the SM, 

a manifestly nonlinear theory whose structure is based on self-interacting gauge 

and Higgs fields. As explained below, the principle also implies that space-time 

dimensionality becomes scale-dependent near or above the low TeV scale. This 

conjecture has recently seen growing interest in theoretical physics and goes 

under several designations, from “fractional field theory” to “continuous 
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dimension”, “non-integer metric” and “dimensional flow”. Drawing from the 

ideas of the Renormalization Group (RG) program, a key finding below is that the 

SM represents a self-contained multifractal set. The set is defined on continuous 

space-time having arbitrarily small deviations from four-dimensions, referred to 

as a “minimal fractal manifold” (MFM). Here we explore the dynamical 

implications of the MFM and, staying consistent with experimental data, we show 

that they offer novel explanations for some of the unsolved puzzles raised by the 

SM.  

 In contrast with many mainstream proposals, the universality principle hints that 

moving beyond the SM requires further advancing the RG program. In particular, 

understanding the nonlinear dynamics of RG flow equations and the transition 

from smooth to fractal dimensionality of space-time are essential steps for the 

success of this endeavor. RG trajectories form a nonlinear and multidimensional 

system of coupled differential equations. The traditional assumption is that these 

equations describe parameter evolution towards isolated and stable fixed points. 

There is evidence today that this assumption is too restrictive, that it may ignore 

the rich dynamics of the flow in the presence of perturbations, in particular the 

emergence of bifurcations, limit cycles and strange attractors [  ]. This may alter 

the conclusion (drawn from a linear stability analysis) that the flow is well-

behaved and that non-renormalizable interactions become irrelevant at the 

electroweak (EW) scale. 

 Our approach does not rely on additional hypotheses, symmetries or degrees of 

freedom beyond what the SM is based upon. It is also in line with the emerging 

science of complexity, in general, and to the well-developed fields of nonlinear 
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dynamics, fractal geometry and chaotic behavior, in particular. A key feature of 

the MFM is that the assumption 4 D    << 1, postulated near the EW scale, is 

the only sensible way of asymptotically matching all consistency requirements 

mandated by relativistic QFT and the SM [  ]. In particular, large departures from 

four-dimensionality imply non-differentiability of space-time trajectories in the 

conventional sense. This in turn, spoils the very concept of “speed of light” and it 

becomes manifestly incompatible with the Poincaré symmetry. 

Few words of caution are now in order, namely, 

 It must be emphasized at the outset that ideas discussed here stand in sharp 

contrast with the multitude of avenues followed by Quantum Gravity theories 

such as, but not limited to, String/M theories, Supergravity, Loop Quantum 

Gravity, Deformed Special Relativity, Spin Foam models of quantum space-time, 

Black Hole phenomenology, Deformed Special Relativity, Causal Dynamical 

Triangulation, Poincaré Invariant Networks, Tensor Networks, Causal Sets, 

Lorentz Invariance Violation, Horava-Lifschitz gravity, Asymptotic Safety, Planck 

scale phenomenology and so on. The path taken here does not advocate any 

changes to either General or Special Relativity or the current framework of the 

SM. It does not substitute the spacetime fabric with discrete networks of 

interconnected entities. Rather, our work may be remotely tied to the study of 

wavefunction multifractality and multifractal behavior of disordered quantum 

systems in condensed matter applications [ ]. Moreover, the low-level fractal 

topology described by the MFM may be associated with the upper boundary of q-

deformed Quantum Field Theory, that is, 1 0q     [  ]. 
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 By default, given the breadth and complexity of topics linked to the development 

of QFT and SM, our book cannot claim to be either fully rigorous or formally 

complete. The sole intent here is to proceed from a less conventional standpoint 

and outline a new research strategy. Many premises and consequences of our 

approach are left out to avoid excessive information. Ideas are introduced in the 

simplest possible context with the caveat that they can be further extended to 

more realistic scenarios. For concision and simplicity, the mathematical 

presentation is kept at an elementary level.  

The book is organized as follows: the basics of regularization theory as key tool of the 

RG program are discussed in the first section. This sets the stage for section 2, where we 

argue that the continuum limit of QFT is a weak manifestation of fractal geometry.  

Nonlinear dynamics of RG flow equations and their ability to account for the self-similar 

structure of SM parameters form the object of section 3.  Drawing on these premises, 

section 4 argues that, near the electroweak scale, the ordinary four-dimensional space-

time turns into a MFM and that the SM can be understood as a self-contained multi-

fractal set. Along the same line of inquiry, section 5 shows that the MFM can account for 

the dynamic generation of mass scales in QFT. Next  couple of sections cover several 

features of the MFM that are also relevant to QFT and the physics of the SM, namely, 

charge quantization and the topological underpinning of quantum spin. Casting the 

MFM as asymptotic embodiment of non-commutative field theory forms the topic of 

section 8.The subtle duality between the MFM and classical gravity is touched upon in 

section 9. To provide proper guidance to the main text, several Appendix sections are 

introduced at the end of the book.   
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The reader is urged to keep in mind the introductory nature of this work. Further 

research and independent experimental validation are needed to substantiate, refute or 

develop the body of ideas outlined here.  

1. BASICS OF REGULARIZATION THEORY 

As it is known, the technique of regularization assumes that divergent quantities of 

perturbative QFT depend on a continuous regulator   [  ]. The regulator can be either a 

large cutoff UV    or an infinitesimal deviation of the underlying space-time 

dimension, viz.    << 1 , D D   . A divergent quantity O  becomes a function of 

the regulator, ( )O O  , asymptotically approaching the original quantity in the limit 

1 1 0UV      or 0   . As a result, in close proximity to this limit, the quantity of 

interest is no longer singular ( ( )O   < ∞). To fix ideas, consider the one-loop 

momentum integral of the massive 4  theory defined on a two-dimensional Euclidean 

space-time ( 2D  )  

 
2

2 2 2

1

(2 )

d p

p m
 

  (0.1) 

The integral is logarithmically divergent at large momenta 2( )p ∞ for p ∞. One 

way to regularize (1.1) is to upper-bound it with a sharp momentum cutoff UV  >> m  as 

in 

 

2

2 22

2 2 2

0

1 1
ln( )

4 4

UV

UV
c

mdp

p m m 



 
  

   (0.2) 
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The Pauli-Villars regularization method is based on subtracting from (1.1) the same 

integral having a larger momentum scale   >> m , that is,     

 
2 2

2 2 2 2 2 2

1 1 1
( ) ln( )

(2 ) 4
PV

d p

p m p m 


   

   (0.3) 

By contrast, dimensional regularization posits that the space-time dimension can be 

analytically continued to D  , which turns (1.1) into 

 
2

2 2 2

1

(2 )
DR

d p

p m












 

   (0.4) 

where   is an arbitrary mass scale that preserves the dimensionless nature of DR  (1.4) 

can be formulated as [  ]  

 
2

2

1 2
[ ln(4 ) ln( ) ( )]

4
DR

m
O  

  
        (0.5) 

in which   stands for the Euler constant. Comparing (1.3) with (1.5) and further taking 

  to be on the same order of magnitude with m  ( ( )O m  ) leads to the identification 

  

 
1


 ~ 

2

2
ln ( )

m


  (0.6) 

Side by side evaluation of (1.2) and (1.5) gives instead [  ] 

 
2

2

UV




 ≈ 

2

2

UV

m


 ~ 

2

1
( )O

e







   (0.7) 
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Relations (1.6) and (1.7) describe the same scaling behavior if the dimensional 

parameter is assumed to be vanishingly small (  << 1) and ( )m O   << ( )UVO   . 

From these considerations we develop the reasonable numerical approximation 

   ~ 
2

2

UV

m


  (0.8) 

We’ll make use of (1.8) in the section 4. 

An important observation is now in order. The generating functional describing the 

physics at an arbitrary observation scale   in exactly four dimensions is given by the 

path integral [  ] 

 4 4

0 int[ ] exp{ [ ( , ) ( , ) ( ) ( ) ( )]}Z j D d x L L d x j x x              (0.9) 

A drawback of dimensional regularization is that, unlike the RG prescription used in the 

momentum cutoff scheme, it cannot be extrapolated beyond perturbation theory [  ]. 

There is no realistic way of replicating the path integral (1.9 in non-integer dimensions 

(that is,   ≠ 0 ) whereby the dynamics can be specified by an effective Lagrangian 

expanded in local operators [  ]. Therefore, a non-perturbatively valid construction of a 

local QFT rooted in dimensional regularization appears to be impossible. Fortunately, as 

we argue throughout the book, introducing the MFM as space-time endowed with 

arbitrarily small deviations from four dimensions (  << 1), provides the only sensible 

solution of working in a region that asymptotically matches the conditions mandated by 

local QFT and the SM [  ].  
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2. QUANTUM FIELD THEORY AS WEAK MANIFESTATION OF FRACTAL 

GEOMETRY 

We discuss in this section two theoretical arguments suggesting that the continuum 

limit of QFT leads to fractal geometry. The first argument stems from the Path Integral 

formulation of QFT, whereas the second one is an inevitable consequence of the 

Renormalization Group (RG). 

2.1 QFT AS CRITICAL BEHAVIOR IN STATISTICAL PHYSICS 

A basic task in perturbative QFT is to compute the time-ordered n-point Green function, 

i.e. [  ] 

 
1 2

1 2

( ) ( )... ( )
0 { ( ) ( )... ( )} 0

i S

n

n i S

D x x x e
T x x x

D e

  
  






 (2.1) 

Performing the rotation to Euclidean space ESi Se e and taking the above integral to run 

over all configurations that vanish as the Euclidean time goes to infinity ( Et   ), leads 

to the conclusion that (2.1) is formally identical to the correlation function of classical 

statistical systems. A natural question is then: What kind of statistical system is able to 

duplicate the properties of a QFT described by (2.1)? 

In order to compute (2.1), it is convenient to discretize the Euclidean space using, for 

example, a four-dimensional lattice with constant spacing  . Under the assumption 

that the number of lattice sites is finite, the path integral of (2.1) becomes well defined 

and the question posed above amounts to taking the continuum limit 0   at the end 

of calculations. 
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To fix ideas, consider the two-point Green function for a massive field theory defined on 

four-dimensional spacetime with Euclidean metric 


  

 
4

4 2 2

exp( )
( ) (0)

(2 )

d p ipx
x

p m
 




  (2.2) 

 with 
2

p p p

  and px p x

 . Calculations are considerably simplified if m x  >> 1 , 

in which case (2.2) becomes 

 ( ) (0)x   ~ 
2

1
exp( )m x

x
  (2.3) 

Expressing the space-time separation as x n and assuming n  >> 1  leads to 

 ( ) (0)x   ~ exp( )n m  (2.4) 

By analogy with statistical physics, the behavior of  

 ( ) (0)x   ~ exp( )
n


  (2.5) 

determines the dimensionless correlation length  . Comparing (2.4) and (2.5) yields 

 
1

m



  (2.6) 

It is immediately apparent that the continuum limit 0   of the massive theory (that 

is, for m ≠ 0 ) implies singular correlation length, that is,   .  This conclusion shows 

that QFT models phenomena that are strikingly similar with the ones describing critical 
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behavior in statistical physics. Since all phenomena near criticality are scale-free and lay 

on a fractal foundation [  ], it is clear that the continuum limit of QFT necessarily leads 

to fractal geometry.   

2.2 RG AND THE ONSET OF SELF-SIMILARITY IN QFT 

As it is known, the RG studies the evolution of dynamical systems scale-by-scale as they 

approach criticality [  ]. It does so by defining a mapping between the observation scale 

(denoted by  ) and the distance ( cx    ) from the critical point, where the passage 

0x  defines the continuum limit in energy space. The universal utility of the RG is 

based on the existence of self-similarity of all observables as 0x . 

To illustrate this point, consider a generic model whose fields are evenly distributed on 

the discrete lattice of points. The behavior of the Lagrangian ( )L x  in the RG formalism 

is given by the following set of transformations [  ]  

 ' ( )x x  (2.7)     

 
1

( ) ( ) [ ( )]L x h x L x 


 (2.8) 

Here,   is a constant describing the rescaling of the Lagrangian upon shifting the scale 

to the critical value ( c  ), the function ( )x is called the flow map and 

 ( ) ( ) ( )cL x L L    (2.9) 
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such that ( ) 0L x   at the critical point. The function ( )h x  represents the non-singular 

part of ( )L x . Assuming that both ( )L x  and ( )x  are differentiable, the critical points 

are defined as the set of values at which ( )L x  becomes singular, that is, when 
dL

dx
 . 

Then, the formal solution of (2.8) can be presented as the recursive sequence 

 0 ( ) ( )f x h x  (2.10) 

 1 0

1
( ) ( ) ( ) ,n nf x f x f x  


  0,1,2....n   (2.11) 

where 

 ( )

0

1
( ) [ ( )]

n
i

n i
i

f x h x





  (2.12) 

Here, the superscripts ( i ) denote composition, that is, 

  (2) (3) (2)( ) , ( ) ...x x           (2.13) 

The renormalized Lagrangian assumes the form 

 ( ) lim ( )n
n

L x f x


  (2.14) 

The above relation indicates that all copies of the Lagrangian specified by the iteration 

index n  become self-similar in the limit n. Furthermore, if x  designates a generic 

coupling constant ( ( )x g  ) whose critical value occurs at ( )c cg g  , the Lagrangian  
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 ( )

0

1
( ) ( )n

n
n

L g h g




   
  (2.15) 

may be shown to become singular at cg g . In the neighborhood of cg g  (2.15) follows 

a power law that is typical for the onset of fractal behavior, namely: 

 ( ) ( ).( )cL g const g g    (2.16) 

where   stands for the critical exponent. 

This brief analysis clearly points out that QFT is a hidden manifestation of fractal 

geometry. As we have repeatedly shown over the years, exploiting the fractal 

underpinnings of QFT and RG may provide viable solutions for the many puzzles 

associated with the SM [  ].  

3. NONLINEAR DYNAMICS OF THE RG FLOW AND SM PARAMETERS 

Previous section has surveyed the close connection between fractal geometry, critical 

phenomena and the RG treatment of QFT. In statistical physics, the divergence of the 

correlation length near a second-order phase transition signals that the properties of the 

critical point are insensitive to the microscopic details of the system. Likewise, the 

approach to conformal point in effective QFT is considered to be insensitive to the 

physics of the ultraviolet (UV) sector, according to the so-called cluster decomposition 

principle [  ]. One is therefore motivated to search for a description of critical behavior 

applicable to a wide range of phenomena, from many-body statistical systems to 

interacting quantum fields. As we argue below, the Landau-Ginzburg-Wilson (LGW) 

model offers a sound baseline for such an enterprise. 
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To drive home the main point, in this section we restrict our analysis to the infrared (IR) 

sector of the self-interacting scalar field theory. It is in this limit where the LGW model 

provides a unified description of the long-wavelength behavior associated with many 

dynamical systems [  ]. Despite the fact the LGW model is not a realistic substitute for 

relativistic QFT and the SM, it gives valuable insight into how dynamics evolves near 

criticality. With these cautionary remarks in mind, the LGW model provides an effective 

benchmark for understanding the primary attributes of IR quantum electrodynamics 

(QED) or UV quantum chromodynamics (QCD) and asymptotically free theories.   

This section is divided into two parts. In paragraph 3.1 we introduce the mapping 

theorem which establishes a useful analogy between scalar field theory and the IR sector 

of the Yang-Mills theory. Next paragraph develops the nonlinear dynamics of RG flow 

equations which are found to provide a straightforward explanation on the hierarchical 

pattern of SM parameters.   

3.1 THE MAPPING THEOREM 

The electroweak group of the SM is represented by (2) (1)SU U  and is broken at a 

scale approximately given by 
1

2( )EW FM O G


 , in which FG  is the Fermi constant [  ]. 

Yang-Mills fields associated with (2)SU  are vectors denoted as ( )aA x , in which 

0,1,2,3   is the Lorentz index and 1,2,3a   is the group index. To manage the large 

number of equations derived from the Yang-Mills theory, it is desirable to devise a 

method whereby ( )aA x  are reduced to analog fields having less complex structure. The 

mapping theorem allows for such a convenient reduction. The action functional of 

classical scalar field theory in four-dimensional space-time is defined as 
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                                             4 2 2 41 1
[ ] [ ( ) ]

2 4!
S d x g                                                    (3.1)       

An extremum of (3.1) is also an extremum of the (2)SU Yang-Mills action provided that: 

a) g  represents the coupling constant of the Yang-Mills field, 

b) some components of ( )aA x  are chosen to vanish and others to equal each other.  

In the most general case, the following approximate mapping between Yang-Mills fields 

and scalar ( )x  holds [  ]: 

                                                    
1

( ) ( ) ( )
2

a aA x x O
g

                                                   (3.2a)        

where 
a

  are properly chosen constants. Mapping becomes exact in the Lorenz gauge 

( ) 0aA x
   and in the IR regime of strong coupling ( g  ). 

 ( )( ) ( ) 0 ,a axA x A x g
       (3.2b) 

3.2 DYNAMICS OF RG FLOW EQUATIONS 

We start from the standard LGW action for the massive O(N) field theory in 3 + 1 

dimensions in the presence of external sources [  ]. It has a similar structure as (3.1) and 

is given by 

 
0

4 21
[ ] { ( )[ ] ( ) [ ( ) ( )] ( ) ( )}

2 4

a a a a a a

J

u
S A d x A x r A x A x A x j x A x S      (3.3) 
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Here, ( ) ( ( ))aA x A x  represents the Yang-Mills field, ( ( ))aj j x is the external fermion 

current (whose contribution to the action in the absence of interactions is denoted by 

0JS ). The summation convention is implied and the Lorentz index is omitted for 

simplicity. To make the derivation more transparent and without a significant loss of 

generality, we proceed with the following set of simplifying assumptions: 

A3.1) the LGW model is placed on a MFM characterized by a space-time dimension 

arbitrarily close to four, that is, 4D   , where   << 1. According to the philosophy of 

critical phenomena in continuous dimension,   is regarded as the sole control 

parameter driving the dynamics of the model [  ]. With reference to (1.8), fine-tuning the 

dimensional parameter   is formally equivalent to applying continuous changes of the 

momentum cutoff UV . The passage to the classical limit 0   can be approached in 

two separate ways: 

1)  UV   and 0  < m <<  ; 

2) UV  <   and 0m  . 

The latter condition matches the infrared behavior of the LGW model, i.e. its long-

wavelength properties ( ) ( )Q O m O   , in which Q  stands for the magnitude of 

momentum transfer. We exclusively focus below on this asymptotic regime, whereby m  

~   > 0.  

Both limits 1) and 2) are disfavored by our current understanding of the far UV and the 

far IR boundaries of field theory (see e.g. [ ]). Theory and experimental data alike tell us 
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that the notions of infinite or zero energy are, strictly speaking, meaningless. This is to 

say that either infinite energies (point-like objects) or zero energy (infinite distance 

scales) are unphysical idealizations. Indeed, there is always a finite cutoff at both ends 

of either energy or energy density scale (far UV = Planck scale, far IR = finite radius of 

the observable Universe or the non-vanishing energy density of the vacuum set by 

cosmological constant). These observations are also consistent with the estimated 

infinitesimal (yet non-vanishing) photon mass, as highlighted in [  ].   

A3.2) In light of the mapping theorem introduced in section 4.1, the discussion is 

limited to the O (1) model, i.e. the gauge field is treated as a scalar. 

A3.3) the overall fermion current contains two terms, 

 0( ) ( ) ( )J x j x J x   (3.4) 

where ( )j x  represents he component that couples to ( )A x  and 0( )J x  the free (non-

interacting) component. If ( )j x  is uniform, its contribution to the action may be 

presented as 

 0( ) d

jS j A x d x jA     (3.5) 

Likewise, if we further assume that 0( )J x  is uniform as well, its contribution to the 

action is well approximated by an additive constant, that is [  ], 

 
0JS ~ 3

0J d x  ~ 
3 3

0 0 ( )J J O m   (3.6) 

The action functional assumed the familiar form 
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0

4 41
[ ] { ( )[ ] ( ) [ ( )] ( ) ( )}

2 4
J

u
S A d x A x r A x A x j x A x S       (3.7) 

A3.4) Section 3.1 has pointed out the close analogy between quantum field theory 

(QFT) and statistical systems near criticality. On this basis, we assume that the Yang-

Mills model is reasonably well approximated by the LGW theory of critical behavior. 

A3.5) It follows from A3.4) that the dimensional parameter of LGW theory and 

dimensional regulator of Yang-Mills theory 4 D    are identical entities. This identity 

is made explicit in the first row of Tab. 1 below. 

A3.6) As stated above, we focus on the IR regime of Yang-Mills theory in which 

1
2

EW FM G


 stands for the EW scale, FG  for the Fermi constant ( )O m   for the 

running scale and the ultraviolet (UV) scale UV EWM      for the cutoff.  

A3.7) The UV cutoff is not uniquely determined but smeared out by high-energy noise [  

]. The UV cutoff spans a range of values 

 UV UV    (3.8)                                                              

(3.8) implies that, at any given   and UV , dimensional parameter   falls in the range 

 2 UV

UV


 





 (3.9)                                                         

Elaborating from these premises leads to the following side-by-side comparison 

between the parameters of LGW of statistical physics and Yang-Mills theory: 
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Landau –Ginzburg -Wilson theory Yang-Mills theory 

Dimensional parameter ( 4 D   ) Dimensional regulator ( 4 D   ) 

Momentum cutoff ( ) Ultraviolet cutoff  ( UV ) 

Temperature (T ) Energy scale ( EW UVM    ) 

Critical temperature ( cT ) EW scale ( EWM ) 

Temperature parameter ( r ) 
Deviation from the EW scale 

( EWM   ) 

Coupling parameter ( u ) Coupling constant ( 2g ) 

External field ( h ) Fermion current ( j ) 

Tab. 1: Comparison between LGW of statistical physics and Yang-Mills theory 

 

Under these circumstances, RG flow equations for r  , 2u g  and fermion current 

fj j  read, respectively [  ] 

 2 2( )
( )(2 )bg ag

t





  


 

 
2

2 2 23 ( )
g

g b g
t




 


 (3.10)    

(3 )
2

f

f

j
j

t


 


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Here, 

                            2

43 UVa K  ,      43b K ,      2 1

4 (8 )K                                       (3.11)                                    

On account of (  ), the Wilson-Fisher (WF) fixed point of (3.10) is defined by the pair 

 ( )*
6

a

b
    (3.12a) 

 
2( )*

3
g

b


  (3.12b)                                                     

(3.12) acts as a non-trivial attractor of the RG flow. Because it resides on the critical line

EWM  , it describes by definition a massless field theory ( 0r   ) [ ]. The non-

vanishing vacuum of   at the WF point results from minimization of (3.7), that is,  

 
1

2
42

6(- )
v = 3( )

( )
UVK

g

 



     (3.13)                                             

(  ) and (  ) show how massive gauge bosons develop at the WF point from critical 

behavior near 4D  . Let v =M denote the mass acquired by the gauge boson. 

Combining (  ), (  ), (  ) and (  ) yields   

2 * 2 2( ) .EWg M M const    

(3.14)                                                                                                                                                                                                                                                              

* 2( )g ~ fm
~  
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in which 
* ( )f fm O j  stands for the normalized fermion mass [13]. On account of 

assumptions (  ), (  ) and (  ), the WF attractor ( ) changes from a single isolated point to 

a distribution of points.  Our next step is to explore the link between the structure of the 

WF attractor and the parameters of SM. 

3.3 WILSON-FISHER ATTRACTOR AS SOURCE OF PARTICLE MASSES 

AND GAUGE CHARGES 

We are now ready to analyze the dynamics of (  ) using the standard methods employed 

in the study of nonlinear systems [  ]. To this end, we first note that the last equation in (  

) is uncoupled to the first two. This enables us to reduce (  ) to a planar system of 

differential equations. We next cast (  ) in the form of a two-dimensional map, namely 

 
2 2 2

1( ) (1 )( ) 3 ( )n n ng t g b t g       (3.15) 

 
2 2

1( ) ( ) [1 2 ( ) ] ( )n n n nt b t g a t g          (3.16)                      

where t  represents the increment of the sliding scale. Linearizing (22) and computing 

its Jacobian J  gives 

 1 (2 ) 1J t       (3.17)                                                        

It follows that the map (3.15, 3.16) is dissipative for 0   and asymptotically 

conservative in the limit 0t    . Invoking universality arguments [  ] we conclude 

that, near criticality, (3.15, 3.16) shares the same universality class with the quadratic 

map. Furthermore, in the neighborhood of the Feigenbaum attractor,   approaches 

0   according to:  
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n

n na  


     (3.18)                                                        

Here, 1n   is the index counting the number of cycles generated through the period 

doubling cascade,   is the rate of convergence (in general, different from Feigenbaum’s 

constant for the quadratic map) and na  is a coefficient which becomes asymptotically 

independent of n , that is, a a   [  ]. Substituting (  ) in (  ) yields 

                             2 2( ) ( ) ( )
n

j n n f nP n M g m 


         if   1n                                     (3.19) 

in which 1,2,3j   indexes the three entries of (3.19). Period-doubling cycles are 

characterized by 2 pn  , with 1p  . The ratio of two consecutive terms in (3.19) is then 

given by 

 
( 2 )( 1)

[ ]
( )

p
j

j

P p
O

P p



   (3.20)                                                   

Numerical results derived from (3.20) are displayed in Tab. 3. This table contains a side-

by-side comparison of estimated versus actual mass ratios for charged leptons and 

quarks and a similar comparison of coupling strength ratios. Tab. 2 contains the set of 

known quark and gauge boson masses as well as the SM coupling strengths. All quark 

masses are reported at the energy scale given by the top quark mass and are averaged 

using reports issued by the Particle Data Group [  ]. Gauge boson masses are evaluated 

at the EW scale and the coupling strengths at the scale set by the mass of the Z  boson. 

The best-fit rate of convergence is 3.9   which falls close to the numerical value of the 
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Feigenbaum constant corresponding to hydrodynamic flows [  ]. (  ) and (  ) imply that 

there is a series of terms containing massive electroweak bosons, namely  

 
2 2 2

1 1( ) ( ) .... ( ) ... .n n n n n q n qM g M g M g const  

          (3.21)                     

For the first two terms of this series we obtain 

 
2 2 2

2

2 2

2 2

1Z EM

W

M g e

M g






     (3.22)                                                   

in which 
2

4EM
e


  is the electromagnetic coupling strength and 

2

2
2 4

g



  the 

strength of the weak interaction. The rationale for (3.22) lies in the fact that the charged 

gauge boson W   carries a superposition of weak and electromagnetic charges, whereas 

the neutral gauge boson 0Z  carries only the weak isospin charge. Inverting (3.22) and 

taking into account the last rows of Table 3, leads to 

 
2

2

2

2

1 1 1
1 cos

1
11

W
W

EMZ

M

M


 
 

    



  (3.23)                               

(3.23) suggests a natural explanation for the Weinberg angle W . Likewise, we may write 

(3.22) as 

 
2 2 2

2 2

2 2

W Z

g g e
const

M M


    (3.24)                                                  

This relation offers a straightforward interpretation for both Fermi constant and the 

mass of the hypothetical Higgs boson. Indeed, in SM we have [  ] 
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2

2

2
4 2 F

W

g
G

M
   (3.25) 

and 

 0 1
( ) 246.22

2F

V GeV
G

     (3.26)                                              

where 0( )V   denotes the vacuum expectation value for the neutral component of the 

Higgs doublet. 

A similar analysis may be carried out for neutrinos.  Since neutrino oscillation 

experiments are only sensitive to neutrino mass squared differences and not to the 

absolute neutrino mass scale denoted by ( 0m ), they can only supply lower limits for two 

of the neutrino masses, that is, 
1

2 22( ) 5 10ATMm    eV and 
1

2 22( ) 1 10SOLm   eV (see refs. 

listed in [  ]). As a result, it is more relevant to consider experimentally constrained 

bounds on 0m  reported from beta decay, neutrinoless double beta decay as well as from 

cosmological observations. 

Based on these inputs, it makes sense to set the upper (U) and lower (L) limit values for 

the absolute neutrino mass scale as 0( ) 2Um   eV and 0( ) 0.1Lm   eV. According to Tab. 1, 

ratios of charged lepton masses scale as 
2




 and 
4




, which suggests that 0m  should 

naturally follow a 
8




 or 
16




pattern . Table 2 displays a side-by-side comparison on the 

neutrino to electron mass ratio for 0( )Um  and 0( )Lm , respectively, and shows that 

numerical predictions line up fairly well with current observations. 
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Tab 2: Actual versus predicted ratios of SM parameters (except neutrinos) 

 

 

 

Parameter 
ratio 

 

Parameter 

ratio 

 

Behavior 

 

Behavior 

Actual  

 

Actual 

Predicted 

 

Predicted 

u

c

m
m  

 

 

4

  
33.365 10  34.323 10  

c

t

m
m

 
4

  
33.689 10  34.323 10  

d

s

m
m

 
2

  0.052  0.066 

s

b

m
m

 
2

  0.028  0.066 

em
m

 
4

  
34.745 10  34.323 10  

m
m





 
2

  0.061  0.066 

W

Z

M
M

 

1
2

1
(1 )

  

0.8823 0.8921 

2EM

W

( )



 

2

  0.053  0.066 

2EM

QCD

( )


  
4

  
34.034 10  34.323 10  
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Parameter 
ratio 

 

Parameter 

ratio 

 

Behavior 

 

Behavior 

Actual 

 

Actual 

Predicted 

 

Predicted 
0

e

m
m

  8

  

72 10   

64 10   

51.87 10  

0

e

m
m

  16

  

72 10   

64 10   

103.5 10  

 

Tab. 3: Actual vs. predicted ratios of neutrino mass scales. 

4. SM AS A MULTIFRACTAL SET 

In this section we argue that, at least near the electroweak scale, the SM represents a 

self-contained multifractal set on the MFM characterized by 4 , 1D     . All 

coupling charges residing on the MFM (gauge, Higgs and Yukawa) satisfy a closure 

relationship that a) tightly constrains the flavor and mass content of the SM and b) 

naturally solves the “hierarchy problem”, without resorting to new concepts reaching 

beyond the physics of the SM. 

This section is organized as follows: relevant definitions and assumptions are 

introduced in paragraph 4.2; the modification of a generic action functional living on 

the MFM is detailed in 4.3. The next paragraph explores the consequences of placing 

classical electrodynamics of charged fermions on MFM. Expanding on these ideas, 4.5 

reveals how the mass and flavor content of the SM may be derived from the properties 

of the MFM. The ensuing multifractal structure of the SM and the proposed resolution 

of the hierarchy problem form the topic of paragraphs 4.6 and 4.7. 
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4.1 DEFINITIONS AND ASSUMPTIONS 

A4.1) As previously pointed out, the cross-over regime between 0   and 0   is the 

only sensible setting where the dynamics of interacting fields is likely to asymptotically 

approach all consistency requirements imposed by QFT and the SM [  ]. Large 

deviations from four dimensions ( ~ (1)O ) may signal the breakdown of these 

requirements. Particular attention needs to be paid, for example, to the potential 

violation of Lorentz invariance in Quantum Gravity theories advocating the emergence 

of space-time of lower dimensionality at high energy scales [  ].  

From the standpoint of interacting field theory, a non-vanishing and arbitrarily small deviation 

from four dimensions is equivalent to allowing the Renormalization Group (RG) equations to 

slide outside the isolated fixed points solutions (FP) [  ]. Recalling that FP are synonymous with 

equilibria in the dynamical systems theory, it follows that, in general, the evolution of quantum 

fields is no longer required to settle down to equilibrium states. The end result is that the 

condition 1   enables the isolated FP of the RG equations to morph into attractors with a 

more complex structure [  ].    

A4.2) 0u  is the reference charge distribution on MFM for a fixed 1   (fixed number 

of dimensions), 

A4.3) u  is the effective charge distribution on MFM when 1   is allowed to vary (i.e., 

the number of dimensions is allowed to evolve with the energy scale), 
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A4.4) 0 0 0,, , fg y  are the coupling charges for the scalar, gauge and Yukawa sectors of 

the Standard Model, measured at the energy of the electroweak scale defined by EWM in 

ordinary four dimensional space-time ( 0  ).   

A4.5) Any theory exploring physics beyond the Standard Model (BSM) must fully 

recover the principles and the framework of perturbative QFT at energy scales 

approaching EWM . In particular, it needs to preserve unitarity, renormalizability and 

local gauge invariance and be compatible with precision electroweak data [  ].   

4.3 THE MINIMAL FRACTAL MANIFOLD (MFM) 

Field theory on fractional four-dimensional space-time is described by the action 

 4( ) (v( ) )S d x L x d x L
 

 

    (4.1) 

where the measure ( )d x  denotes the ordinary four-dimensional volume element 

multiplied by a weight function v( )x [ ]. If the weight function is factorizable in 

coordinates and positive semidefinite, v( )x  assumes the form   

 

1
3

0

v( )
( )

x
x



 








  (4.2) 

in which    

 0 1   (4.3) 
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are four independent parameters. An isotropic space-time of dimension 4D    is 

characterized by 

 1
4






   


 (4.4) 

which turns (4.2) into   

 v( )x  ≈ 
4

( )x   (4.5) 

Dimensional analysis requires all coordinates entering (4.2) and (4.5) to be scalar 

quantities. They can be generically specified relative to a characteristic length and time 

scale, as in 

 0

0

x
x

L




   (4.6) 

in which 0,   are positive-definite energy scales. Relation (4.5) becomes 

 
4

0

v( ) ( )x 



  (4.7) 

such that 

 
0

0, 0
lim v( )

, 0x

if
x

i f





 
 

  
 (4.8) 

Choosing 0   we can expand (4.7) as: 

 ln aa e   ≈ 1 ln a  (4.9) 
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which yields 

 
0

v( ) 1 4 ln( ) 1 4 ln( )x x


 


     (4.10) 

4.4 EMERGENCE OF EFFECTIVE FIELD CHARGES ON THE MFM 

A remarkable property of fractal space-time is the emergence of “effective” coupling 

charges induced by polarization in non-integer dimensions [  ]. To fix ideas, consider the 

case of classical electrodynamics coupled to spinor fields in a MFM with evolving 

dimensionality [  ]. From (4.10) we obtain   

 
2

2

0v( )e x e  ≈ 
2

0

0

1 4 ln( )

e






 (4.11) 

where, following definitions A4.2) and A4.3), 

0 0,e u e u    

In light of assumption A4.5), (4.11) has to match the expression of the running charge in 

perturbative Quantum Electrodynamics (QED). At one loop, this expression reads [  ]  

 
2

2 0

2

0

2

0

1 ln( )
6

e
e

e 

 





 (4.12) 

Comparing (4.11) with (4.12) leads to:    

 
2

0 ( )e O   (4.13) 



37 
 

 

This finding reveals that the dimensional parameter   represents the physical source of 

the field charge in ordinary four-dimensional space-time. As previously alluded to, this 

“dynamic generation” of effective field charges can be traced back to the intrinsic 

polarization induced by fractal space-time. The process is strikingly similar to the 

emergence of non-trivial FP’s in the LGW model of critical behavior in 4D    

dimensions [ ]. The discussion may be extrapolated from electrodynamics to classical 

gauge theory and, as previously pointed out, it sets the stage for a novel interpretation of 

mass and flavor hierarchies present in the SM. 

4.5 THE MASS AND FLAVOR HIERARCHIES OF THE SM 

Re-iterating results obtained in section 3.3, the analysis of the RG equations on the 

MFM reveals that, near the electroweak scale, the normalized masses of fermions ( fm ), 

weak bosons ( M ) and electroweak gauge charges ( 0g ) scale as  

 f
m  ~    (4.14) 

 
2

0
g  ~    (4.15) 

 
2 2 2

0
g M const M  ~ 1


   (4.16) 

It can be also shown that, under some generic assumptions regarding the RG flow and 

its boundary conditions, the system of RG equations lead in general to a transition to 

chaos via period-doubling bifurcations as 0   [  ]. According to ideas outlined in 

section 3, the sequence of critical values , 1,2,...n n   driving this transition to chaos 

satisfies the geometric progression   
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 0n n      ~ 
n

nk 


 (4.17) 

Here, 1n   is the index counting the number of cycles created through the period-

doubling cascade,   is the rate of convergence and nk  is a coefficient that becomes 

asymptotically independent of n  as n  . Period-doubling cycles are characterized by 

2in  , for i  >> 1. Substituting (4.17) in (4.14) and (4.15) yields the following ladder-like 

progression of critical couplings 

 ,f im  ~ 
2

0,ig  ~ 
2 i




  (4.18a) 

In section 3.3 we found that scaling (4.18a) recovers the full mass and flavor content of 

the SM, including neutrinos, together with the coupling strengths of gauge interactions. 

Specifically,  

 The trivial FP of the RG equations consists of the massless photon ( ) and the 

massless UV gluon ( g ). 

 The non-trivial FP of the RG equations is degenerate and consists of massive 

quarks ( q ), massive charged leptons and their neutrinos ( ,l  ) and massive weak 

bosons ( ,W Z ). 

 Gauge interactions develop near the non-trivial FP and include electrodynamics, 

the weak interaction and the strong interaction. 

It was suggested in [  ] that a space-time background with low-level fractality ( <<1) 

favors the formation of a Higgs-like condensate of gauge bosons, as in  
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 0 01 [( ) ( )]
4C W W Z g W W Z g                 (4.18b)                          

Here, 0,W Z denote the triplet of massive (2)SU  bosons and ,g   stand for gluon and 

photon, respectively. Relation (4.18b) implies that the scalar condensate C  acquires a 

mass in close agreement with the mass of the SM Higgs boson ( Hm = 125.6GeV ).    

4.6 MULTIFRACTAL STRUCTURE OF THE SM  

A key parameter of the RG analysis is the dimensionless ratio ( )
UV




, in which   is the 

sliding scale and UV >>   the high-energy cutoff of the underlying theory. As discussed 

in the first section, the connection between the parameter 4 D    and UV  is given by      

   ~ 
2

2

1

log( )UV




 (4.19) 

The large numerical disparity between   and UV  enables one to approximate   as in 

   ~  2( )
UV




 (4.20) 

Let im  denote the full spectrum of particle masses present in the SM. Relation (4.20) 

can be written as  

 
2 2

2 2

02 2
( )i i EW

i i

UV EW UV

m m M
r

M
   

 
  (4.21) 

in which 
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,i EW
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EW UV

m M
r

M
 


 (4.22) 

and  

 2

0

i
ir




   (4.23) 

With reference to (  ) of Appendix B, we find that (4.23) obeys a closure relationship 

typically associated with multifractal sets, namely [  ]: 

 
2 2( ) 1i

i

i i EW

m
r

M
     (4.24) 

in which the sum in the left-hand side extends over all SM fermions (leptons and 

quarks). 

The sum rule (4.24) may be alternatively cast in terms of SM field charges. We obtain  

 

22 2 2
0,0 0 0

0

,

( ')
2 1

4 4 2

f

l q

yg g g



     (4.25) 

where 

0
0

0

( )scalaru



   

02

0

0

( )gaugeu
g


   



41 
 

 

02

0

0

( ' )
'

gaugeu
g


  

From either (4.24) or (4.25) one derives  

 EWM  ~ V  = 246.2 GeV  (4.26) 

in close agreement with the vacuum expectation value of the SM Higgs boson (V ). In 

closing, we mention that the existence of (4.25) was first brought up in [  ], with no 

attempt of formulating a theoretical interpretation. 

4.7 SOLVING THE FLAVOR AND HIERARCHY PROBLEMS ON THE MFM 

Relations (4.18), (4.24) and (4.25) tightly constrain the particle content of the SM. They 

naturally fix its number of independent field flavors near the electroweak scale. Also, 

since all scaling ratios in (4.24) must have a magnitude of less than one unit, (4.24) and 

(4.25) necessarily imply that the mass of the Higgs boson cannot grow beyond EWM , at 

least near the electroweak scale. This conclusion brings closure to the hierarchy 

problem, whose formulation is briefly outlined in Appendix A.  

5. MFM AND THE DYNAMIC GENERATION OF MASS SCALES IN FIELD 

THEORY   

The consensus among high-energy theorists is that, as of today, the mechanism 

underlying the generation of mass scales in field theory remains elusive. Our intent here 

is to point out that the MFM can naturally account for the onset of these scales. A 
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counterintuitive outcome of this analysis is the deep link between the minimal fractal 

manifold and the holographic principle. 

5.1 MOTIVATION 

One of the many unsettled questions raised by field theory revolves around the vast 

hierarchy of scales in Nature [  ]. A large numerical disparity exists between the Planck 

scale ( PlM ), the electroweak scale ( EWM ), the hadronization scale of Quantum 

Chromodynamics ( QCD ) and the cosmological constant scale (
1

4
cc , with cc  expressed 

as energy density in 3+1 dimensions).   

It has been long known that perturbative QFT cannot provide a complete description of 

Nature since its formalism entails divergences at both ends of the energy spectrum [  ]. 

For instance, many textbooks emphasize that the singular behavior of momentum 

integrals in the ultraviolet (UV) sector arises from the poorly understood space-time 

structure at short distances [ ]. Lattice field models handle infinities through 

discretization of the space-time continuum on a grid of spacing " " . This procedure 

naturally bounds the maximal momentum allowed to propagate through the lattice, 

namely, 

 p  ≤ maxp ~ 1(2 )    (5.1) 

The downside of lattice models is that they generally fail to be either gauge or Poincaré 

invariant [  ]. Restoring formal consistency is further enabled via the RG program [  ].  

RG regulates the n-th order momentum integrals of the generic form 
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 2( ) ( )n

nI p dp f p   (5.2) 

by either inserting an arbitrary momentum cutoff 0  <  ~ 1  <   or by continuously 

“deforming” the four-dimensional space-time via the dimensional parameter   . The 

resulting theory is free from divergences and operates with a finite number of redefined 

physical parameters. Restoring the continuum space-time limit is done at the end by 

taking the limit   or 0  . Both limits are disfavored by experimental data, as 

discussed in section… 

Reinforcing this viewpoint, some authors argue that the idea of smooth space-time 

stands in manifest conflict with the basic premises of quantum theory [  ]. To confine an 

event within a region of extension    requires a momentum transfer on the order of 1  

which, in turn, generates a local gravitational field. If the density of momentum transfer 

is comparable in magnitude with the right hand side of Einstein’s equation, the local 

curvature of space-time (~
2

0R 
) induced by this transfer is given by (in natural units, 

1c  )    

 
2

0R 
~ 

4

NG   (5.3) 

However, collapse of the event within a short region of extent 0( )O R   amounts to 

trapping outgoing light signals and preventing direct observation. 

All these considerations invariably point to the following challenge: on the one hand, a 

continuum model of space-time near or below EWM  serves as an effective paradigm that 

is likely to fail at large probing energies. Yet on the other, any discrete model of space-
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time typically violates Poincaré or gauge symmetries. It seems only natural, in this 

context, to take a fresh look at ( ) and ( ) and appreciate the message it conveys: if either 

UV  stays finite or   << 1 is arbitrarily small but non-vanishing, space-time 

dimensionality becomes a non-integer arbitrarily close to four. Stated differently, in the 

neighborhood of EWM , conventional space-time necessarily turns into a MFM [ ]. 

On closer examination, this finding is hinted by a number of alternative theoretical 

arguments: 

a) It is well known that the principle of general covariance lies at the core of classical 

relativistic field theory. An implicit assumption of general covariance is that any 

coordinate transformation and its inverse are smooth functions that can be 

differentiated arbitrarily many times. However, as it is also known, there is a plethora of 

non-differentiable curves and surfaces in Nature, as repeatedly discovered since the 

introduction of fractal geometry in 1983 [ ]. The unavoidable conclusion is that 

relativistic field theory assigns a preferential status to differentiable transformations 

and the smooth geometry of space-time, which is at odds with the very spirit of general 

covariance. 

b) On the mathematical front, significant effort was recently invested in the 

development of q-deformed Lie algebras, non-commutative field theory, quantum 

groups, fractional field theory and its relationship to the MFM [  ].  It is instructive to 

note that all these contributions appear to be directly or indirectly related to fractal 

geometry [  ]. Moreover, the condition   << 1, defined within the framework of MFM, is 
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the sole sensible setting where fractal geometry asymptotically approaches all 

consistency requirements mandated by QFT and the Standard Model [  ]. 

c) Demanding that phenomena associated with gravitational collapse follow the 

postulates of quantum theory implies that the world is no longer four-dimensional near 

PlM . This statement has lately received considerable attention and forms the basis for 

dimensional reduction and for the holographic principle of Quantum Gravity theories [  

]. If we accept that the four-dimensional continuum is an emergent property of the 

electroweak scale and below (  < EWM ), the holographic principle implies that space-

time dimensionality evolves with the energy scale between EWM , where   << 1, and PlM

, where space is expected to become two-dimensional viz. (1)O   [  ].    

The section is organized as follows: next paragraph introduces the concept of 

holographic bound and derives the relationship involving the IR and UV cutoffs of field 

theory. Building on these premises, 5.3 develops a comparison between mass scales 

estimated using our approach and their currently known values.  

5.2 THE HOLOGRAPHIC BOUND 

Consider an effective QFT confined to a space-time region with characteristic length 

scale L  and assume that the theory makes valid predictions up to an UV cutoff scale UV  

>> 1L . It can be shown that the entropy associated with this effective QFT takes the 

form [  ] 

 S ~ 
3 3

UV L  (5.4) 
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To understand the significance of (5.4), consider an ensemble of fermions living on a 

periodic space lattice with characteristic size L  and period 
1

UV

 . One finds that (5.4) 

simply follows from counting the number of occupied states for this system, which turns 

out to be 
3( )

2 UVL
N


 [  ]. The holographic principle stipulates that (5.4) must not exceed 

the corresponding black hole entropy BHS , that is, 

 
3 3

UVL   ≤ 2 2

24

BH
BH Pl

Pl

A
S R M

l
   (5.5) 

in which BHA  is the area of the spherical event horizon of radius R .  Introducing a new 

reference length scale   defined as 

 
3

2

L

R
   (5.6) 

leads to the condition 

  ≤ 
3 2

UV PlM   (5.7) 

On the other hand, since the maximum energy density in a QFT bounded by the UV 

cutoff is 
4

UV , the holography bound (5.5) leads to [  ] 

 
4

UV ~ 
1 2 2

2 2

1 3 2

( )

( )

Pl Pl
UV

M M









 

 
~ PlM



 (5.8) 

Since the IR cutoff is fixed by 
1

IR

   , (  ) yields the scaling behavior  
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 IR

UV




 ~ UV

PlM


 (5.9) 

Although conventional wisdom suggests that the SM retains its validity all the way up in 

the far UV sector of particle physics, there are indications that it may break at a scale 

that is at least an order of magnitude lower than PlM , that is, 'UV  < PlM  [see e.g. ].  

Relation (5.9) may be conveniently reformulated at 'UV  > UV  as in 

 
'

'

UV UV UV

Pl UV PlM M 

  



  (5.10) 

such that 

 
'

Pl IR

UV UV

M 

 
 ~ 

'

UV

UV




 (5.11) 

or 

 
'IR

UV




 ~ 

'

UV

UV




 (5.12) 

in which 'IR  > IR  is a new IR scale given by 

 '
'

Pl IR
IR

UV

M 
 


  (5.13) 

A glance at ( ), ( ) and ( ) reveals deep similarities between the holographic principle and 

the MFM. They all represent scaling relations that mix and constrain largely separated 

mass scales. We next use ( ) and ( ) to derive numerical estimates and compare them 

with experimental data. 
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5.3 NUMERICAL ESTIMATES  

Tab. 4 displays currently known values for the representative scales of QFT and classical 

field theory. The electroweak scale ( )EWM  is set by the vacuum expectation value of the 

Higgs boson, the far UV scale is set by either Planck mass ( PlM ) or the unification scale (

GUTM ). The near UV cutoff is assumed to be close to the so-called Cohen-Kaplan 

threshold ( CK ~ 210 TeV), according to [  ].       

Scale Name Magnitude  
1

4
IR cc    

Cosmological 
constant scale 

≤ ~ 10-3 eV 

'IR QCD    QCD scale ~ 200 MeV 

UV EWM   EW scale ~ 246 GeV 

'UV CK    UV cutoff ~ 210 TeV 

GUTM  GUT scale ~ 1016 GeV 

PlM   Planck scale ~ 1019 GeV 

Tab. 4: The spectrum of mass scales in field theory 

Tab. 5 shows numerical results. We find that: 

a) the cosmological constant scale is consistent with its experimentally determined value 

and with the scale of neutrino masses [  ].  

b) the near IR scale is consistent with the QCD scale ( )QCD . This conclusion may shed 

light into the long-standing problem of the QCD mass gap as well as on the non-

perturbative properties of strongly coupled gauge theory [  ]. 
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Mass scale Estimated Units Comments 
1

4
IR cc    ~ 

61.6 10    eV from PlM   

1
4

IR cc    ~ 
31.9 10    eV from GUTM   

'IR QCD    ~ 193   MeV from CK   

 

Tab 5: Estimated values of the cosmological constant and QCD scales (assuming the 

electroweak scale at EWM  ≈ 246 GeV and the Cohen-Kaplan cutoff at CK  ≈ 102 TeV) 

The hierarchy of mass scales derived above can be conveniently summarized in the 

following diagram:   

1
4

cc (far IR Cutoff) << QCD (near IR cutoff) < EWM < CK (near UV cutoff) << PlM (far UV cutoff) 

6. CHARGE QUANTIZATION ON THE MFM  

This section briefly makes the case that classical Maxwell equations on fractal 

distributions can account for the quantization of electric charge. In contrast with the 

standard formulation of classical electrodynamics, Maxwell equations on fractal 

distribution of charged particles generate fractional magnetic charges or fractional 

monopoles ( mq ) [  ]. Although these fractional objects are un-observable at energy scales 

significantly lower than EWM , their cumulative contribution may become relevant for 

charge quantization following Dirac’s theory of magnetic monopoles.  Needless to say, 

this short analysis is far from being either rigorous or complete. Our sole intent here is 

opening an unexplored research avenue which, to the best of our knowledge, has not 

received any prior consideration.  

The non-vanishing divergence of an external magnetic field B  applied to a fractal 

distribution of charges is given by  
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 2( , )B B rc d      (6.1) 

in which the correction coefficient assumes the form 

 
2

2

2

2
( , )

( )
2

d
d

c d
d







r r   (6.2) 

Fractional monopoles depend on the gradient of (6.2) according to 

 mq  ~ 2( , )c dB r  (6.3) 

We assume herein that the magnitude of the radial vector r  is normalized to a reference 

length 0r  or, equivalently, to a reference mass scale 1

0 0r  . Hence,  

 0

0

( ) ( )
r

r




 r rr u u   (6.4) 

in which 
ru  stands for the unit vector in the radial direction. Since the deviation from 

two dimensionality on a minimal fractal manifold is quantified as 2d   , with   << 1, 

(6.2) is well approximated by 

 2 ( , )c d r  ~  0( ) 





ru   (6.5) 

Combined use of (6.2) and (6.5) yields  

 2( , )rc   ~ 10

0

( ) ( )
 

 
 

  r ru u   (6.6)  
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Because our analysis is carried out in a classical framework, we choose 0 EWM   and 

the regime of mesoscopic scales   << EWM , with ( )
EW

O
M

  . Relation (6.6) turns 

into   

 2( , )rc   ~ 2 ru   (6.7) 

The quadratic dependence on   suggests that fractional magnetic charges are likely to 

be unobservable on mesoscopic scales. Substituting (6.7) into the Dirac charge 

quantization condition [  ] gives 

                                                   meq  ~ 
2

n
 2( )e    rB u  ~  

2

n
                                              (6.8)   

where natural units are assumed and 1, 2,...n    . It is readily seen that, in contrast 

with fractional magnetic charges, the quantization of free electric charges scales as 
2 
 

and is likely to be observable at mesoscopic distances on the order of 1( )O  .  

7. ON THE CONNECTION BETWEEN THE MFM AND QUANTUM SPIN 

The aim of this section is to point out that the inner connection between MFM and local 

conformal field theory (CFT) makes quantum spin a topological property of the MFM.  

7.1 INTRODUCTORY REMARKS  

In his seminal paper of 1939, Wigner has shown that the concept of quantum spin 

follows naturally from the unitary representation of the Poincaré group [  ]. The two 

invariant Casimir operators of the Poincaré group, 
2P P m

   and ( 1)W W ms s

     
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supply the rest mass m  and the spin s  of the particle, respectively. Here P  is the 

generator of translations and W  the Pauli-Lubanski operator defined as 

 W P J 

    (7.1) 

in which   stands for the four-dimensional Levi-Civita index and J   are the 

generators of the Lorentz group. The second Casimir invariant implies that the square of 

the spin three-vector of a massive particle (S ) relates to the Pauli-Lubanski operator via  

 
2

1
S S W W

m



    (7.2) 

Our brief analysis reveals that quantum spin may be understood outside the traditional 

framework of representation theory, specifically as emerging attribute of the MFM. 

Expanding on these ideas, we next suggest that the inner connection between MFM and 

local conformal field theory (CFT) makes quantum spin a topological property of the 

MFM. It is instructive to note that this interpretation of quantum spin resonates well 

with the framework of ideas presented in [  ].   

7.2 QUANTUM SPIN AS MANIFESTATION OF THE MFM 

Consider a flat four-dimensional space-time with constant metric having the standard 

signature ( 1,..., 1)diag    . A differentiable map ' ( )x x  is called a conformal 

transformation if the metric tensor changes as [  ] 

 2' '
( )

x x
x

x x

 

    
   

 
  

 
  (7.3) 
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in which 2 ( )x  represents the scale factor and Einstein’s summation convention is 

implied. The scale factor is strictly equal to unity on flat space-times ( 2 ( ) 1x  ), a 

condition matching the translations and rotations group of Lorentz transformations. In 

general, if the underlying space-time background deviates from flatness and is 

characterized by a metric ( )g x  ≠  , the condition for local conformal transformation 

(7.3) reads 

 2( ) ( ) ( ) ( )g x g x x g x     (7.4) 

where 2 ( )x  ≠ 1. A nearly conformal transformation (NCT) is defined by a scale factor 

departing slightly and continuously from unity, that is, 

                                   2( ) 1 ( )x x    ≈ exp [ ( )]x  ,  ( )x  << 1                                            (7.5) 

Consider next infinitesimal coordinate transformations which, up to a first order in a 

small parameter ( )x  << 1, can be presented as 

 2' ( ) ( )x x x O        (7.6) 

Demanding that (7.6) represents a local conformal transformation amounts to [  ] 

 
2

( )
D

               (7.7) 

The scale factor corresponding to (7.6) is given by 

 2 22( )
( ) 1 ( )x O

D




 
      (7.8) 
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Any locally defined MFM is characterized by a space-time dimension ( ) 4 ( )D x x  , 

where the onset of the fractal dimension ( )x  << 1 reflects a nearly-vanishing deviation 

from strict conformal invariance expected at the trivial FP’s of the RG flow [ ]. 

Conformal behavior in flat space-time matches the scale-invariant (constant) metric 

, whereby 2 ( ) 1x   and ( ) 0x   as a result of (7.3) and (7.5). In field-theoretic 

language, reaching the conformal limit on the flat four dimensional space-time means 

that the RG trajectories flow into stable fixed points where they settle down to steady 

equilibria. One arrives at similar conclusions by following the prescription of the 

dimensional regularization program [  ]. All these observations enable us to draw a 

natural connection between the fractal dimension ( )x  << 1 and the NCT, namely, 

 2( ) 4 ( ) ( ) 1 ( )D x x x x        (7.9) 

Replacing (7.9) into (7.8) and ignoring the contribution of quadratic terms yields 

 2 ( ) ( )x x    << 1   (7.10) 

Furthermore, setting the fractal dimension as divergence of a locally defined 

“dimensional” field ( )x   

 2 ( )x 

         (7.11) 

leads to the following condition for conformal invariance on the MFM 

 ( )     <<  1  (7.12) 



55 
 

 

A typical ansatz in CFT is to assume that the infinitesimal coordinate transformations 

( )x  are at most quadratic in x , that is, 

 ( )x a b x c x x  

         (7.13) 

where , ,a b c    << 1 are constant coefficients with c c  . The individual terms of 

expansion (13) describe various conformal transformations and their respective 

generators. In particular, 

1) The constant coefficient a  represents an infinitesimal translation 'x x a     whose 

generator is the momentum operator P i     . 

2) The next term can be split into a symmetric and an anti-symmetric contribution 

according to 

 b m      (7.14) 

where m m   . The symmetric part   labels infinitesimal scale transformations                   

(dilatations) of the generic form ' (1 )x x    and corresponding generator D ix

   . 

The anti-symmetric part m  describes infinitesimal rotations ' ( )x m x   

    whose 

associated generator is the angular momentum operator ( )L i x x       . 

3) The last term at the quadratic order in x  defines the so-called “special conformal 

transformations”. 
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Returning to (7.9) to (7.12), a reasonable hypothesis is to assume that the dimensional 

field ( )x  is at most linear in x , which corresponds to a nearly-constant fractal 

dimension ( )x  ≈  . Thus we take 

 ( )x d e x       (7.15) 

subject to the requirement of infinitesimal coefficients ,d e  <<  1. Retracing previous 

steps, we split e  into a symmetric and anti-symmetric contribution   

 e f      (7.16) 

subject to the condition f f   . The symmetric part denotes a scale transformation 

similar to ' (1 )x x   , whereas the anti-symmetric part defines an “intrinsic” rotation 

of the form 

 ' ( )x f x   

     (7.17) 

It follows that the “rotation-like” transformation (17) stems from the fractal topology of 

the MFM and may be associated with the generator of quantum spin S . A favorable 

consequence of this brief analysis is that, by construction, S  replicates the algebra of 

the angular momentum operator L . In closing we mention that these findings are 

consistent with the body of ideas developed in [  ]. 
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8. MINIMAL FRACTAL MANIFOLD AS ASYMPTOTIC REGIME OF NON-

COMMUTATIVE FIELD THEORY 

In this section we argue that MFM may be treated as asymptotic manifestation of Non-

Commutative (NC) Field Theory near the electroweak scale. Our provisional findings 

may be further expanded to bridge the gap between MFM and NC Field Theory.   

1. INTRODUCTION  

Non-Commutative field theory represents a generalization of standard Quantum Field 

Theory (QFT) to space-times having non-commuting coordinates. It is based on the 

premise that coordinates may be promoted to hermitean operators x


( 0,1,2,3  ) 

obeying the commutation rules [1, 3-5] 

 , ix x 
 

  
  

 (1) 

where 
  is a real-valued and anti-symmetric matrix of dimension (length)2. If 

 is 

constant, the commutators define a Heisenberg algebra and imply the space-time 

uncertainty 

 x x   > 
1

2

  (2) 

It is known that space-time quantization (1) involves a number of difficulties when 

gauged against the geometry of four-dimensional continuum. For example, the 

condition 
0i ≠ 0, 1,2,3i   implies a theory that violates causality and unitarity. 

Likewise, (1) stands in conflict with Lorentz invariance: the choice 
12 ≠ 0 leads to 
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breaking of Lorentz invariance to the residual (1,1) (2)SO SO symmetry generated by 

boosts along the third space direction (3) and rotations in the (1,2)  directions [6]. 

As with any compelling efforts aimed at developing QFT beyond its present boundaries, 

NC field theory must be able to recover the physics of the Standard Model in the 

appropriate limit. In particular it has to fulfill all consistency requirements mandated by 

the Standard Model near the electroweak scale. It is our opinion that NC field theory, 

despite advancing many attractive claims, is not yet at this stage. As explained in the 

text, there are reasons to believe that the only way NC field theory can make sensible 

contact with the physics of the Standard Model is to conjecture that (1) can be mapped 

to a continuous deformation of conventional commutation rules. Moreover, this 

deformation must be dependent on a parameter that vanishes identically on the four-

dimensional space-time. The goal of this section is to point out that the concept of MFM 

provides a natural choice for this conjecture.  

A counterintuitive outcome of field theory is that the exact continuum limit of a local 

QFT formulated on flat spacetime has, strictly speaking, no correlate to physical reality 

[7]. The Minkowski metric of Special Relativity underlies the most basic aspect of QFT, 

namely the space-like commutativity of local observables, yet is considered only an 

“emergent” phenomenon and an approximate description of an underlying fundamental 

theory.   

2. NON-COMMUTATIVITY OF FRACTAL OPERATORS   

In a nut-shell, fractal (or fractional) operators are differential derivatives and integrals 

of arbitrary non-integer order. They offer novel tools for the analysis of interacting 
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systems that are embedded on fractal supports or in dynamic environments falling 

outside equilibrium conditions. We survey next the commutativity of fractal operators 

with emphasis on the setting describing minimal fractality (  << 1). Let 

 1n  <   < n , 1m  <   < m  where ,n m N   (3) 

denote the fractional order for two Caputo operators ,O O   working on a generic 

function ( )f x [2]. Their commutator is given by  

 ,O O O O O O           (4a) 

We introduce the convention 

 ,O    if  > 0 (4b) 

 O I  , if  < 0 (4c) 

To model the behavior of (4b-c) on the MFM and establish connection to the NC field 

theory, we take 

    << 1,  4 D    > 0 (5a) 

 '  << 1,  ' 4 D   < 0 (5b) 

 ( )f x x
 

  (5c) 

(5c) asymptotically converges to the conventional space-time coordinates in the limit 

, ' 0   , that is,  
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0

lim( )( )x x


 


   (6a) 

 '

' 0
lim( )( )I x x


 






  (6b) 

Using calculations detailed in [2] yields 

 
'1

' 0
0

0

( )
, ( ) 2 ( )( )

( 1 ' )

jn
j

j

x x
I f x f x

j

 
 

 

 





        

  (7) 

where the space-time index ,   is omitted for the sake of clarity. The commutator 

vanishes if  

 0( )( ) 0, 0,1,2......, 1.j f x j n     (8) 

which fails to be true unless 0 0x  . Same conclusion applies to the case where the two 

operators are of the Riemann-Liouville type [2]. It is readily seen from (6a-b) and (7), 

(8) that fractal operators working on the MFM enable a continuous deformation of 

space-time commutativity into the quantization condition (1). The deformation goes 

away as , ' 0   , a setting that recovers the familiar geometry of the four-dimensional 

continuum.        

9. FRACTAL PROPAGATORS AND THE ASYMPTOTIC SECTORS OF QFT 

This section contemplates the connection between the asymptotic regions of QFT and 

the MFM. The starting point of our analysis is the observation that propagators for 

charged fermions no longer follow the prescription of perturbative QFT in the far IR and 

far UV sectors of particle physics. The propagators acquire a fractal structure from 
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radiative corrections contributed by gauge bosons. We show how this structure may be 

analyzed using the attributes of the MFM.  An intriguing consequence of this approach 

is the emergence of classical gravity as long-range and ultra-weak excitation of the Higgs 

condensate.  

9.1 INTRODUCTORY REMARKS 

The free-fermion propagator in QFT determines the probability amplitude for a fermion 

to travel between different space-time locations. It is given by [  ] 

 
4

4
( ) exp[ ( )] ( )

(2 )
F F

d p
S x y ip x y S p


      (9.1) 

in which 

 
2 2

1
( )

0 0
F

p m
S p

p m i p m i











 


 

   
 (9.2) 

This formula successfully applies to both the IR regime of quantum electrodynamics 

(QED) and the UV limit of quantum chromodynamics (QCD), where the approximation 

of nearly free-fermions holds well. In contrast, at distance scales where the radiative 

contribution of soft photons to electron self-interaction becomes relevant and is 

accounted for, the propagator changes to [  ] 

 
2 2 (1 )

( ) ( ) (1 )
( 0 )

p mm
S p

i p m i










 


  

  
 (9.3) 
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Here, the fractional “anomalous” exponent 





  is related to the low-energy value of 

the fine structure constant  ,   is an arbitrary high-energy scale and (...)  stands for 

the Gamma function. Surveying the history of publications on this topic reveals the 

limitations of conventional QFT in dealing with non-perturbative aspects of particle 

physics [  ]. 

Let 

 
2 2 (1 )

1 ( 0 )
( ) ( )

p m i
S p f

p m m







 
   




≈ ( 0 ) ( )p m i f
m



  
    (9.4a) 

 ( )f
m


 ( )

i

m


 (9.4b) 

represent the inverse propagator entering (9.3). Relation (9.4) explicitly factors out the 

contribution of the standard inverse propagator ( 0 )p m i

    and the interpolating 

function ( ) ( )if
m m

  expressed in terms of two widely separated mass scales m << 

 and fractional exponent  .   

This analysis is, however, not limited to the QED of charged fermions. Similar reasoning 

indicates that both scalar and gauge bosons of the Standard Model (SM) cannot be 

realistically approximated as excitations of free fields. In particular [  ], 

a) Higgs and Yang-Mills theories are nonlinear dynamic models which exhibit self-

interaction, with the possible exception of the deep UV sector where they become ultra-

weakly coupled or “trivial”. 
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b) In general, the contribution of fermionic loops (and hypothetical new degrees of 

freedom arising beyond SM) cannot be fully balanced without invoking precise 

cancellation of competing diagrams (“fine tuning”). 

c) Although the SM is perturbatively renormalizable and free from anomalies, 

anomalous propagators and their corresponding behavior can still occur whenever 

conditions fall outside perturbation theory.  

It is reasonable, on these grounds, to posit that inverse propagators acting at the 

boundaries of QFT are well approximated by their conventional form times a generic 

interpolating function, as in [  ] 

 
1( )sS p

 ≈ 
2

2 2

2

0

( 0 ) ( )
p

p m i f
p

   (scalars) (9.5a) 

 
1( )bS p

 ≈ 
2

1 2 2

2

0

( 0 ) ( )
p

g p m i f
p



    (vector bosons, Feynman gauge) (9.5b) 

 1( )fS p  ≈ 
0

( 0 ) ( )
p

p m i f
p



    (fermions) (9.5c) 

Here, 0p  represents an arbitrary reference IR or UV momentum scale. In particular, the 

IR regime of massive scalar field theory is characterized by [  ] 

 0 IRp p < p <  (9.6) 

subject to the constraint 
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2

IR
IR

p p p
p

p
  
 

 (9.7) 

Near and below the lower limit of range (9.6), the scaling ratio (9.7) behaves as  

 
2( ) 1lim

IRp p IR

p

p

     ( p ≠ 0 ) (9.8) 

 
2

0

( ) 0lim
p IR

p

p

    ( p  < IRp )   (9.9) 

Our goal is to further understand the structure and dynamic implications of the inverse 

propagator (9.5) using fractional field theory. The section is organized as follows: 

paragraph 9.2 introduces the concept of fractal propagator starting from the fractional 

Klein-Gordon equation; the connection between fractal propagators and FFT is 

presented in 9.3. Building on these premises, 9.4 derives the link between fractal 

propagators and classical gravity, whereby the latter emerges as long-range and ultra-

weak excitation of the Higgs condensate.  

9.2 THE FRACTAL PROPAGATOR CONCEPT 

Consider the stationary fractional Klein-Gordon equation in one space dimension [  ] 

 2( ) ( )xD m x      (9.10) 

where xD   is the differential operator of non-integer index  , ( )x  is a time-

independent point source of strength g   

 ( ) ( )x g x    (9.11) 
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The choice 2   recovers the standard Klein-Gordon equation. The Green function can 

be evaluated taking the Laplace transform of (10), which leads to 

 2 2 1( , , ) ( )G m p p m     (9.12) 

If 2    with   << 1, we obtain 

 2 2 2 1( , , 2 ) ( )G m p p m       (9.13) 

The solution of (9.10) may be explicitly expanded in Mittag-Leffler (ML) functions [  ] 

 
 2

2 2 2 2 2 1

2 ,3 2 ,3 k

0 0

( ) { ( ) ( ( ') ( ') ( ') '}

x

k

k k

k

x a x E m x E m x x x x x dx


   

    


    

     



        (9.14) 

(9.14) represents a generalization of the Yukawa short-range solution in exactly four-

dimensional spacetime ( 0  ) 

 
exp( )

( )
4

Y

g mx
x

x





   (9.15) 

where the presence of ML functions signals the onset of long-range spatial correlations 

in the behavior of the scalar field ( )x  [  ]. 

9.3 FRACTAL PROPAGATORS IN FRACTIONAL FIELD THEORY 

Let us now take a detour and return to the conventional formulation of particle 

propagators in QFT [  ]. The propagator for free massive spinless fields expressed in 

dimensionless form reads  
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24

0 0
02 4 4 2 2

0 0 0 0

( ) 1
( ) exp( )

(2 ) 0

b
s

S xp pp d p p
S i xp

p p p p p m i




  

    (9.16) 

or 

 

4

0

4
2 20

0 0

( )
1

( ) exp( )
(2 )

( ) ( ) 0
s

p
d

pp
S ipx

p mp
i

p p







 

 
   (9.17) 

We introduce the inverse propagator in momentum space viz. 

 
1 2 2

0 0 0

( ) ( ) ( ) 0s

p p m
S i

p p p

     (9.18) 

Using the line of arguments discussed in 9.2, the inverse propagator acting on the MFM 

is given by 

 
1 2(1 ) 2

0 0 0

( , ) ( ) ( ) 0s

p p m
S i

p p p


      (9.19) 

(9.19) may be alternatively presented as 

 
1

1 2 2 20

0 0 0

( , ) [( ) ( ) 0 ] ( )s

pp p p
S m i

p p p p








     (9.20) 

We proceed with the assumption that the far IR scale is set by the cosmological 

constant, that is, 

 
1

4
IR ccp    (9.21a) 
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Following [  ], dimensional regularization applied in the context of FFT requires the far 

IR scale (
1

4
cc ), the electroweak scale ( )EWM  and the far UV scale fixed by the Planck 

mass ( )UV PlM   to satisfy the constraint 

                                                     

1
4

( )cc EW

EW UV

M
O

M



 


                                                        (9.21b)                       

We are now set to explore the IR region of field theory ranging from the electroweak 

scale 0 EWp M  << UV  to the far scale of cosmic distances EWM > p  >>
1

4
cc . It makes 

sense to revisit the arguments previously made, apply the formalism to the Higgs sector 

of the Standard Model ( Hm m ) and cast (8.20) as 

 
1

1 2 2 2( , ) [( ) ( ) 0 ] ( )EW
H H

EW EW EW

Mp p p
S m i

M M p M








     (9.22a) 

Relation (9.22a) is well approximated by 

 
1
( , )HS P 


≈ 2 2 2[ ( ) 0 ]HP M i P      (9.22b) 

where the “effective” momentum and “effective” Higgs mass are respectively defined as 

 
EW

p
P

M
   (9.23) 

 ( )H
H

EW

m
M

p M
   (9.24) 

A glance at (9.21a-b), (9.22a-b), and (9.5) reveals that the interpolating function  
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2( ) ( )

EW EW

p p
f

M M

  (9.25) 

exhibits the following limiting behavior as   << 1,  ≠ 0 

 ( ) ( )EW Hp O M O m  
2( ) 1lim

EW

UV

M EW

p

M






  (9.26) 

 p  ≤ 
1

4( )ccO   << 
1

4

2lim ( ) 0

cc

EW

EW

EW

M

p
M

M








   ,    if  
EW

p
M

<<    (9.27) 

It is instructive to note here that, consistent with the principles of effective field theory, 

in the far IR limit (9.27), the effective Higgs mass ( ( )HM  ) of (9.22) diverges and 

naturally decouples from physics occurring at very large distances. 

Combined use of (9.25) and (9.27) yields 

 
1 1 1

4 4 4

2 1 2
lim '(0) lim 2 ( ) lim

( )cc cc cc

EW EW EW

EW

M M M
EW

p
f

pM

M



  


 

  
  

   ≈ 
2

( )O




 ≈  (1)O   (9.28) 

provided that 
EW

p
M

does not fall too far below  . We shall use (9.22) and (9.26-28) in 

the next paragraph. 

9.4 CLASSICAL GRAVITY AS LONG-RANGE EXCITATION OF THE HIGGS 

CONDENSATE   

An interesting proposal of [  ] is that classical gravity may be modeled as long-range and 

ultra-weak excitation of the Higgs condensate. The approach developed here points in 
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the same direction: The MFM favors the onset of long-range coupling and the 

emergence of interpolating functions of the type (9.4b) and (9.25) in the expression of 

propagators. 

Following [  ], the connection between Newton’s constant ( )NG and Fermi’s constant 

( )FG is given by 

 
2

24 '(0)

IR
N F

H

p
G G

f m
  (9.29) 

Substituting (9.21a-b) and (9.28) in (9.29) leads to 

 NG  ~ 
3310 FG

 (9.30) 

in good agreement with currently known observational values of the two constants.   

APPENDIX “A”: THE HIERARCHY PROBLEM 

Electroweak (EW) symmetry in the SM is broken by a scalar field having the following 

doublet structure [23]: 

 01 [( V) ]
2

G

H iG

 
  

  
 

 (a.1) 

Here, G 
and 

0G  represent the charged and neutral Goldstone bosons arisen from 

spontaneous symmetry breaking, H is the SM Higgs boson, V ≈ 246EWM GeV is the 

Higgs vacuum expectation value. Symmetry breaking is caused by the Higgs potential, 

whose form satisfies the requirements of renormalizability and gauge-invariance: 
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2 2

0
( , ) ( )

H
V  

  
         (a.2) 

with 0 (1)O   and 
2

H ≈ 
2( )EWO M . A vanishing quartic coupling ( 0 0  ) represents the 

critical value that separates the ordinary EW phase from an unphysical phase where the 

Higgs field assumes unbounded values. Likewise, the coefficient 
2

H  plays the role of an 

order parameter whose sign describes the transition between a symmetric phase and a 

broken phase. Minimizing the Higgs potential yields an expectation value given by:  

 
2

2

0

V ( )H


   (a.3) 

where the physical mass of the Higgs is:  

 
2 2 2

02 V 2H HM      (a.4) 

The renormalized mass squared of the Higgs scalar contains two contributions: 

 
2 2 2

0,H H     (a.5) 

in which 
2

0,H  represents the ultraviolet (bare) value. This mass parameter picks up 

quantum corrections 2  that depend quadratically on the ultraviolet cutoff UV  of the 

theory. Consider for example the contribution of radiative corrections to 
2

H  from top 

quarks. The complete one-loop calculation of this contribution reads: 

 
2

2 2 2

2
[ 2 6 ln( ) ...]

16

c t UV
UV t

t

N
M

M







       (a.6) 
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in which t and tM  are the Yukawa coupling and mass of the top quark.  If the bare 

Higgs mass is set near the cutoff 
2 2 2

0, ( ) ( )H PlO O M    , then 2 ≈ 
3510 GeV2. This 

large correction must precisely cancel against 
2

0,H  to protect the EW scale. This is the 

root cause of the hierarchy problem, which boils down to the implausible requirement 

that 
2

0,H  and 2 should offset each other to about 32 decimal places.  

APPENDIX “B”: LIMITATIONS OF PERTURBATIVE RENORMALIZATION 

AND THE CHALLENGES OF THE SM 

In contrast with the paradigm of effective Quantum Field Theory (EFT), realistic 

Renormalization Group (RG) flows approaching fixed points are neither perturbative 

nor linear. We argue that overlooking these limitations is necessarily linked to many 

unsolved puzzles challenging the Standard Model of particle physics (SM). Here we 

show that the analysis of non-linear attributes of RG flows near the electroweak scale 

can recover the full mass and flavor structure of the SM. It is also shown that this 

analysis brings closure to the “naturalness” puzzle without impacting the cluster 

decomposition principle of EFT. 

B1. INTRODUCTION 

In his 1979 seminal paper on “Phenomenological Lagrangians” [1], Steven Weinberg has 

formulated the fundamental principles that any sensible EFT must comply with in order 

to successfully explain the physics of the subatomic realm: Quantum Field Theory (QFT) 

has no content besides unitarity, analyticity, cluster decomposition and symmetries. 

This conjecture implies that, in order to compute the S-matrix for any field theory below 
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some scale, one must use the most general effective Lagrangian consistent with these 

principles expressed in terms of the appropriate asymptotic states [2].  

Closely related to Weinberg’s conjecture are two key aspects of EFT that deal with the 

separation of heavy degrees of freedom from the light ones [3]. One is the Decoupling 

Theorem (Appelquist-Carrazone) stating that the effects of heavy particles go into local 

terms in a field theory, either renormalizable couplings or in non-renomalizable 

effective interactions suppressed by powers of the heavy scale. The other is Wilson’s 

Perturbative Renormalization Program [4] who teaches how to separate the degrees of 

freedom above and below a given scale and then to integrate out all the high-energy 

effects and form a low-energy field theory with the remaining degrees of freedom below 

the separation scale. 

The idea of scale separation in EFT is typically illustrated by considering the 

perturbative expansion of amplitudes in powers of momenta Q  over a large scale UV , 

the latter setting the upper limit of validity for the EFT [2, 5] 

 ( , , ) ( ) ( , )n UV n
UV

Q Q Q
M g f g


 

 
  (1) 

Here,   represents the RG scale, ng  are the low-energy couplings, the function f  is of 

order unity (1)O (expressing the “naturalness” of the theory) and the summation index 

 is bounded from below. The contribution of the large scale is naturally suppressed as 

UV  >> Q . 
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In this work we re-examine Wilson’s Renormalization ideas as traditionally viewed from 

the standpoint of EFT. The motivation stems from the fact that, although a fully 

consistent and well supported theoretical framework, the SM continues to be plagued by 

numerous conceptual challenges [6, 7]. Our basic premise is that realistic 

Renormalization Group (RG) flows approaching fixed points cannot be restricted to be 

either perturbative or linear. We argue herein that imposing these upfront restrictions 

is inevitably linked to the many challenges left unanswered within the SM. It is shown 

that the analysis of non-linear attributes of RG flows near the electroweak scale can 

recover the complete mass and flavor structure of the SM. It is also shown that this 

analysis brings closure to the “naturalness” puzzle without impacting the principle of 

scale separation of EFT. 

The structure of this Appendix section is as follows: Section two details the general 

construction and limitations of the RG program, with emphasis on the conclusion that 

non-renormalizable interactions vanish at the low energy scale. The idea of dimensional 

regularization and its implications on the emergence of fractal space-time in QFT form 

the topic of section three. A pointer to references that discuss the utility of fractal space-

time in solving some of the main challenges confronting the SM is included in the last 

section. 

B2. LIMITATIONS OF THE RG PROGRAM    

As local QFT residing on Minkowski space-time is expected to break down at very short 

distances due to (at the very least) quantum gravity effects, any physically sensible 

theory must include a high-energy cutoff ( 0 ). The continuum limit is defined by a 
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cutoff approaching infinity ( 0   ∞). To simplify the presentation we follow [4] and 

consider a local scalar field theory in four dimensional spacetime where all field modes 

above some arbitrary momentum scale   < 0  have been integrated out. The 

Lagrangian of such an effective theory assumes the form 

 ( ) ( )n n

n

L a O     (2) 

where ( )nO  represent the set of local field operators, including their spacetime 

derivatives, and ( )na  the set of coupling parameters. If ( )nO   have mass dimensions 

4 nd , ( )na   carry mass dimensions nd  and one can cast all couplings in a 

dimensionless form as in 

 ( ) ( ) nd

n ng a


     (3) 

The behavior of local operators ( )nO  depends on their mass dimensions: relevant 

operators correspond to 0nd  , marginal operators to 0nd   and irrelevant operators to 

0nd  . All mass dimensions are assumed to be scale independent. Since   is arbitrary, 

we may fix the dimensionless couplings (3) at some reference scale chosen to lie in the 

deep ultraviolet region and yet far enough to the cutoff, say UV  < 0  

 ( )n n UVg g   (4) 

The flow of the coupling parameters with respect to a sliding RG scale   < UV  is then 

described by the system of partial differential equations 
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 ( ) ( ; )n n n UVg g   



 


 (5) 

The above flow equations imply that the couplings measured at the sliding scale   

depend on the high-energy parameters ng  and on the ratio UV  as in 

 ( ) ( ; )n n n UVg g g    (6) 

We assume below that there are N relevant and marginal operators with mass 

dimensions less than or equal to 4 . The operators belonging to this set are denoted by 

the Roman indices , ,...a b  , whereas the irrelevant operators with dimension greater than 

4 are indicated by Greek indices , ...  . The Roman characters , , ...m n r  describe the 

general set of operators and couplings. 

It can be shown that in the regime of weakly coupled perturbation theory, the RG flow 

(5) projects an arbitrary initial surface in the UV coupling space { }ng  to a N - 

dimensional surface of { ( )}ng  , a given point of which is uniquely specified by N  low-

energy parameters, up to corrections that decay as inverse powers of the ratio UV   

[4]. The proof relies exclusively on a linear stability analysis of flow equations (5) and 

leads to the following relationships, valid for   << UV  

 ( )g   ~ 1 ( ) ( )a ab bG G g O g      (7) 

where 
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 g   ~ ( )
d

UV





 (8) 

As mentioned above,   denotes the index of irrelevant couplings and operators present 

in the theory. Here, g   represents the set of first order variations in the irrelevant 

couplings 

 1( ) ( ) ( )a ab bg g G G g           (9) 

The matrix ( )nmG   defines the variation of the low-energy parameters ng  under 

variations of the initial high-energy parameters mg  specified by (4), that is,  

 
( )

( )
( )

n
nm

m

g
G

g










 (10) 

The finite N N sub-matrix abG  contains rows and columns restricted to the marginal 

and relevant couplings. Relation (7) states that the contribution of irrelevant couplings 

and operators at low energy (indexed by ) may be entirely absorbed in variations of 

the marginal and relevant couplings (indexed by b).  

Despite being rigorously derived, (7) is founded on a set of simplifying assumptions 

which disqualifies it from being a universal result. In particular, 

1) The matrix abG  is constrained to be nonsingular, which fails to be true for isolated 

sets of measure zero in coupling space [4]. 

2) The theory is considered weakly coupled to make the perturbation analysis 

applicable [4]. 
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3) The linear stability of the flow equations is assumed to hold true in general. With 

reference to planar flows, this is a legitimate approximation only if the fixed points do 

not fall in the category of borderline equilibria (such as centers, degenerate nodes, stars 

or non-isolated attractors or repellers) [8]. Examples of such non-isolated fixed points 

are discussed in [9-12] 

4) The flow equations are assumed to correspond to Markov processes, that is, they are 

immune to memory effects [13]. 

5) Bound states are excluded from this approach, as they require an entirely non-

perturbative treatment [4].  

It is somehow surprising that many QFT textbooks do not explicitly point out the 

limitations that these assumptions place on the validity of field theories in general. The 

widespread belief is that they do not appear to directly impact the cluster decomposition 

principle and all SM predictions up to the low-TeV scale probed by the LHC. However, 

in light of all unsettled questions confronting the SM, one cannot help but wonder if 

some important piece of the puzzle is not lost in overlooking these limitations. For 

example, over past decades the prevailing consequence of the concept of “naturalness” 

for model building has been the cancellation of quadratic divergences to the SM Higgs 

mass [14]. According to this paradigm, the SM itself is an unnatural theory, mandating 

new physics somewhere near the low-TeV scale. At the same time the LHC, flavor 

physics, electroweak precision results and evaluation of the electron dipole moment all 

point to the absence of any new phenomena in this range, which is however necessary to 

accommodate the observation of both neutrino oscillations and cold Dark Matter [14]. 
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It seems that a paradigm shift is clearly needed to understand both the SM and the 

physics lying beyond it. Tackling this challenge from a novel perspective on the RG 

program forms the topic of the next paragraph. 

B3. TOWARD A RESOLUTION OF THE SM CHALLENGES  

Refs. [15-18] describe how the concept of fractal space-time defined by 4D   can be 

used to bring closure to some of the main challenges left open by the SM.  

We end our paper with the key observation that, since the continuum field theory is only 

an “effective” space-time model, the effects induced by the dimensional parameter 

4 D   , with    << 1 , are not perceivable in the computation of scattering amplitudes 

(1) at the SM scale. With reference to (12), the condition   << 1 is equivalent to setting 

( )SM O Q    << UV  and the contribution of   becomes strongly suppressed by the 

power expansion (1). As a result, the cluster decomposition principle of EFT remains 

insensitive to the emergence of fractal space-time near or above the SM scale (   ≥ SM

). 

APPENDIX “C”: A PRIMER ON FRACTALS AND MULTIFRACTALS 

We highlight here few basic concepts and terminology pertaining to fractals and multi-

fractals. Fractals are geometrical objects with non-integer dimensions that display self-

similarity on all scales of observation [18]. The concept of dimension plays a key role in 

the geometry of fractal sets. It is customary to characterize fractals by an ensemble of 

three dimensions, namely: 
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1) The Euclidean dimension “ 1,2,3...D  ” represents the dimension of the space where 

the object resides and is always an integer. 

2) The topological dimension “ Td ≤ D ” describes the dimensionality of continuous 

primitive objects such as points, curves, surfaces or volumes ( 0,1,2,3Td   in ordinary 

four-dimensional spacetime). 

3) The definition of the fractal (or Hausdorff) dimension is as follows: Cover the fractal 

object by d dimensional balls of radius “ ” and let “ ( )N  ” be the minimum number 

of balls needed for this operation. The fractal dimension “ HD ” satisfies the inequality 

Td ≤ HD  ≤ D  and is given by  

 
0

lim ( ) HDN 


    (b.1) 

leading to 

 
10

log ( )
lim[ ]

log
H

N
D







 (b.2) 

Many of the self-similar structures in fractal geometry are built recursively, a typical 

example being the Cantor set. To construct a Cantor set in one dimension ( 1D  ), take 

a line segment called the generator, split it into thirds and remove the middle third. 

Iterate this process arbitrarily many times. One is left with a countable set of isolated 

points having a non-integer fractal dimension HD , with 0Td   ≤ HD  ≤ 1D  . A simple 

Cantor set generated from segments of equal length is defined by a single scaling factor 

1
3

r  < 1. By contrast, more general fractals (such as multifractals) can be created 
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using generator segments of different scaling factors ir  < 1, 1,2,...,i N  satisfying the 

closure relation  

 
1

1H

N
D

i

i

r


  (b.3) 

Many strange attractors of nonlinear dynamical systems represent multifractals and are 

typically characterized by a continuous spectrum of Hausdorff dimensions [18].   

APPENDIX “D”: ON NON-INTEGRABILITY AND THE ASYMPTOTIC 

BRAEKDOWN OF PERTURBATIVE FIELD THEORY 

There are several instances where non-analytic functions and non-integrable operators 

are deliberately excluded from perturbative Quantum Field Theory (QFT) and 

Renormalization Group (RG) to maintain internal consistency of both frameworks. Here 

we briefly review these instances and suggest that they may be a portal to an improved 

understanding of the asymptotic sectors of QFT and the Standard Model of particle 

physics. 

D1. THE FEYNMAN-DYSON INTEGRALS  

It is well known that the standard formulation of perturbative quantum field theory 

(QFT) relies on the Feynman – Dyson series of integrals [  ] 

 1 2 1 2

0

( )
... { ( ) ( )... ( )}

!

n

n I I I n

n

i
S dt dt dt T H t H t H t

n

  

   


      (1) 
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where the integrand consists of the time-ordered product of the interaction Hamiltonian 

( )IH t . The interaction Hamiltonian is typically written as    

 3( ) ( , )IH t d x H t  x   (2) 

in which ( , )H tx  is a polynomial whose terms are local functions of the annihilation and 

creation fields viz. 

 ( ) 3

,

( ) exp( ) ( , , ) ( , , )l l

n

x d p ipx u n a n


     p p  (3) 

 ( ) 3

,

( ) exp( ) ( , , ) ( , , )l l

n

x d p ipx v n a n


     p p  (4) 

 
( ) ( )

,

( ) [ ( ) ( )]l l l

n

x x x


      (5) 

Here, 
( ) ( )l x 

 and 
( ) ( )l x 

 annihilate particles and create antiparticles, respectively, p  

represents the three-momentum,   the z-projection of the spin, n  and n  label the 

number of particle and antiparticle species, respectively. Lorentz transformation 

properties of the fields and one-particle states, along with the constraint that fields 

commute at space-like separations, fix entirely the form of the coefficients lu  and lv .   

A core requirement of QFT is the cluster decomposition principle (CDP) which states 

that distant experiments yield uncorrelated outcomes. In particular, CDP protects low-

energy physics from short-distance perturbations. CDP requires that the interaction 

Hamiltonian be formulated as a power series in the creation and annihilation operators, 

which are sufficiently smooth functions of the momenta. This condition is automatically 
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satisfied by an interaction Hamiltonian having the form (2) [  ]. While there is 

widespread consensus on the compelling success of perturbative QFT in particle physics 

and condensed matter, restricting the analysis to sufficiently smooth Hamiltonians is 

likely to produce unrealistic approximations in future cases of interest. Recent years 

have consistently shown that many nonlinear dynamical systems display non-smooth 

interactions, bifurcations, limit cycles, strange attractors, non-Gaussian noise or 

multifractal properties [  ]. To give only one example, consider the class of non-

integrable systems arising in the context of the three-body problem, chaotic oscillators, 

KAM theory, Henon-Heiles potential, kicked rotor, turbulent flows and so on [ ]. One is 

motivated to ask: What happens if the interaction Hamiltonian is allowed to contain 

non-smooth contributions in the structure of creation and annihilation operators? We 

discuss this topic next. 

D2. NON-PERTURBATIVE EFFECTS OF THE RG FLOW  

One plausible scenario is that the non-smooth contributions emerge at the low-energy 

scale of effective QFT as residual non-perturbative effects of the RG flow [  ]. To fix 

ideas, we follow [  ] and refer to the framework of effective field theories (EFT). In 

general, the construction of EFT is based on the so-called “momentum-shell” approach, 

which consists of a two-step procedure: 

a) change of functional variables of integration in the path integral formulation of the 

theory, 

b) perform partial evaluation of the modified path integral whereby short-wavelength 

fields are integrated out in the absence of external currents. 
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The core assumption of both CDP and EFT holds that the Lagrangian built from the 

remaining “coarse-grained” fields supplies exact results for the n-point amplitudes. Let 

, 1,2,...n n N   denote the complete set of short-wavelength fields characterizing the 

dynamics of the theory at some running high-energy scale   < UV  , in which UV  

stands for the ultraviolet cutoff.  The new set 1,2,3...m M  of “coarse-grained” fields are 

defined through    

 ( ; )m m nf      (6) 

where M  < N  and the “coarse-graining” functions (...)mf  are typically non-invertible. If 

( )nL   represents the Euclidean Lagrangian associated with the short-wavelength fields, 

the effective Lagrangian corresponding to the “coarse-grained” fields (6) takes the form 

 4 4exp[ ( )] [ ( ; )]exp[ ( )]eff m n m m n n

n

d L D f d L              (7) 

The meaning of (7) is that the original “microscopic” Lagrangian can be safely factored 

out when computing the n-point amplitudes of m  in the presence of external currents 

mJ . This is because the generating functional for m  can be expressed in a form that 

does not preserve any memory of the microscopic fields, that is,  

 4 4( ) exp[ ( ) ( ) ( )]m m eff m m m

m

Z J D d xL d x J x x          (8) 

The functions (...)mf  are required to be smooth in order for the effective Lagrangian (7) 

to be expanded in multi-monomials of local products of m . It is also readily seen from 
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(7) that the effective Lagrangian becomes ill-defined if ( )nL   is either non-smooth or 

non-integrable. One cannot arbitrarily discard this possibility in the near or far 

Terascale sector of high-energy physics or in a dynamic environment that no longer 

comply with the conditions of equilibrium statistical physics [  ]. Likely plausible is the 

case where “coarse graining” is partially successful, only part of the EFT survives and 

some residual non-smooth contributions continue to persist at the EFT scale.  

D3. THE DAMPING FUNCTION IN THE “MOMENTUM-SHELL” 

INTEGRATION SCHEME 

These considerations can also directly impact the basis of the “momentum-shell” 

approach. The “momentum-shell” approach turns out to be invalid from an analytical 

point of view as sharp momentum scale yields singular terms in taking derivatives in 

the RG flow equations [  ]. To correct this deficiency, it is necessary to introduce a 

suitable damping function 
2

2( )kD


whose role is to “blur” the sharp momentum scale 

and to suppress the loop integrals arisen from internal propagators that exceed this 

scale ( k  ). The damping function “coarse-grains” the free part of the effective 

Lagrangian in momentum space viz. 

 
2 4

2 2

0 2 4

1
[ , ] ( )( ) ( ) ( )

2 (2 )

k d k
S k k m D k


      

   (9) 

The damping function is required to be strictly analytic in order to maintain the locality 

property of the theory: in particular, it has to ensure that the effective Lagrangian at any 
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scale can be expanded into an infinite sum of local terms, where each term includes 

products of fields and their derivatives defined at single space-time locations. 

APPENDIX “E”: CONSERVATION LAWS FROM THE MINIMAL FRACTAL 

MANIFOLD  

The aim of this Appendix section is to uncover a tentative link between the MFM and 

the symmetry principles underlying QFT. 

The momentum norm of a free relativistic particle is given by 

 
2 0 2 2 0 0 2( ) ( )( )p p pP p p p p p m

         (1) 

in which the rest-frame mass can be factored out as in 

 
2 0 0( )( )p pm m m p p       (2) 

Referring to (4.21)-(4.23) and using the above relation yields  

 
2

2

2 2

0

( )i i i
i

EW EW

m m m
r

M M




      (3) 

(3) suggests a similar factorization of the dimensional parameter i  introduced in 

(4.21)-(4.23), namely 

 
1 1

0 2 2 0 2 22 2
( ) ( )[ ] {[( ) ][( ) ]}ε εi i i i i i i           (4) 

Here, 0

i  is the replica of the temporal component whereas 2

iε  replicates the norm of the 

spatial component of the four momentum vector.   Therefore,  
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 0 2 2( ) ( )i i im    ε  , 0 2 2( ) ( )i i im    ε   (5) 

It is well known that Lorentz symmetry applied to a free relativistic particle enables one 

to arbitrarily select various inertial frames of reference (and different corresponding 

components of the four-momentum) by holding the rest-mass m  invariant. Likewise, in 

light of the above relations (3) to (5), one is free to arbitrarily choose 0

i  and 2
εi , 

provided that i  stays unchanged.    

These observations suggest that the four-momentum conservation can be mapped to the 

requirement of keeping the fractal dimension i  constant. In particular, they hint that 

there is an intriguing correspondence between the relativistic Lorentz transformation 

of inertial frames and the transformation properties of dimensional components 0

i  

and 2
εi . Same reasoning goes for the electric charge, as a result of (3.14). Conservation 

of the electric charge by “rotations” in U(1) space is equivalent to the requirement of 

keeping the dimensional parameter   constant. 

In summary, we find that there is an unforeseen duality between spacetime and gauge 

symmetries, on the one hand, and the invariance of dimensional parameter   << 1 on 

the other [  ].   

10. CONCLUSIONS 

In a letter to a friend written one year prior to his death, Einstein remarked: 

“I consider it quite possible that physics cannot be based on the field concept, that is, on 

continuous structures”.  



87 
 

 

In hindsight, given the difficulties of quantizing classical gravity on discrete space-time 

models along with the persistent lack of compelling evidence for Quantum Gravity [ ], 

one cannot help but wonder if Einstein had a visionary insight on fractal geometry, 

more than twenty years before Mandelbrot’s seminal work of 1975.  Unlike the familiar 

continuum or discontinuous objects of our everyday experience, fractals are ubiquitous 

geometrical structures characterized by non-integer dimensions, non-differentiability 

in the conventional sense and self-similarity on all scales of observation.  It is widely 

recognized nowadays that the mathematics of chaos, nonlinear dynamics and 

multifractals has found a broad range of applications in many branches of human 

endeavor. Seen in this context, fractional field theory has recently surfaced as a rapidly 

evolving field of research in theoretical physics. In a nut-shell, it amounts to a genuine 

attempt of carrying QFT, RG and the SM beyond perturbation theory and equilibrium 

statistical physics into the realm of complexity and dynamically evolving structures.  

Since the high-energy theory is built from nonlinearly interacting operators, the 

underlying principle of this book is that the universal behavior of nonlinear dynamical 

systems must play a critical role in shaping the physics of the SM. An unavoidable 

corollary of this principle is that the basic premises of Wilson’s program on the behavior 

of RG flows near fixed points lose their generality [  ]. As detailed throughout the main 

text, evaluating Wilson’s RG theory from this vantage point necessarily leads to the 

concept of minimal fractal manifold (MFM) and sets the stage for a novel perspective 

on the gauge structure and dynamics of the SM. Our preliminary findings can be 

summarized as follows: 

 The continuum limit of QFT is a weak manifestation of fractal geometry.   
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 Nonlinear behavior of RG flow equations is able to account for the self-similar 

structure of SM parameters, including its gauge and flavor content.    

 In close proximity to the electroweak scale, the ordinary four-dimensional 

space-time turns into a MFM which makes the SM a self-contained multi-

fractal set. 

 The concept of MFM can account for the dynamic generation of mass scales in 

field theory. 

 The Higgs scalar emerges as condensate of gauge bosons on the MFM. 

 The “hierarchy problems” associated with the SM and the cosmological 

constant are solved in the context of the MFM by the natural separation of the 

electroweak scale, far infrared scale and the far ultraviolet scale. 

 Charge quantization and the topological underpinning of quantum spin can be 

understood as direct outcomes of the MFM. 

 The MFM concept enables a natural link to the asymptotic manifestation of non-

commutative field theory and q-deformed field theory. In addition, it suggests a 

straightforward explanation on fermion chirality and the breaking of parity and 

temporal symmetry in electroweak interactions [  ].  

 Classical gravity emerges as dual manifestation of field theory on the MFM and 

may be understood as long-range and ultra-weak excitation of the Higgs 

condensate.   

 The MFM concept opens the door for the possibility of exotic states of matter 

and offers novel viewpoints on the dynamics and composition of the Dark Sector 

[  ].   
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